import torch,pdb import numpy as np import soundfile as sf from models import SynthesizerTrn256 from scipy.io import wavfile from fairseq import checkpoint_utils import pyworld,librosa import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = "path_to_ContentVec_legacy500.pt" print("load model(s) from {}".format(model_path)) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [model_path], suffix="", ) model = models[0] model = model.to(device) model = model.half() model.eval() net_g = SynthesizerTrn256(513,40,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,4,2,2,2],512,[16,16,4,4,4],0) weights=torch.load("qihai.pt") net_g.load_state_dict(weights,strict=True) net_g.eval().to(device) net_g.half() def get_f0(x,f0_up_key=0): f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) f0, t = pyworld.dio( x.astype(np.double), fs=16000, f0_ceil=800, frame_period=10, ) f0 = pyworld.stonemask(x.astype(np.double), f0, t, 16000) f0*=pow(2,f0_up_key/12) f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > 255] = 255 f0_coarse = np.rint(f0_mel).astype(np.int) return f0_coarse wav_path="xxxxxxxx.wav" f0_up_key=0 audio, sampling_rate = sf.read(wav_path) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) pitch = get_f0(audio,f0_up_key) feats = torch.from_numpy(audio).float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) padding_mask = torch.BoolTensor(feats.shape).fill_(False) inputs = { "source": feats.half().to(device), "padding_mask": padding_mask.to(device), "output_layer": 9, # layer 9 } with torch.no_grad(): logits = model.extract_features(**inputs) feats = model.final_proj(logits[0]) feats=F.interpolate(feats.permute(0,2,1),scale_factor=2).permute(0,2,1) p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存 feats = feats[:,:p_len, :] pitch = pitch[:p_len] p_len = torch.LongTensor([p_len]).to(device) pitch = torch.LongTensor(pitch).unsqueeze(0).to(device) with torch.no_grad(): audio = net_g.infer(feats, p_len,pitch)[0][0, 0].data.cpu().float().numpy() wavfile.write("test.wav", 32000, audio)