|
import gradio as gr |
|
import os |
|
import shutil |
|
import spaces |
|
import sys |
|
|
|
|
|
|
|
os.system('pip install -r qa_mdt/requirements.txt') |
|
os.system('pip install xformers==0.0.26.post1') |
|
os.system('pip install torchlibrosa==0.0.9 librosa==0.9.2') |
|
os.system('pip install -q pytorch_lightning==2.1.3 torchlibrosa==0.0.9 librosa==0.9.2 ftfy==6.1.1 braceexpand') |
|
os.system('pip install torch==2.3.0+cu121 torchvision==0.18.0+cu121 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121') |
|
|
|
|
|
from qa_mdt.pipeline import MOSDiffusionPipeline |
|
|
|
|
|
pipe = MOSDiffusionPipeline() |
|
|
|
|
|
@spaces.GPU() |
|
def generate_waveform(description): |
|
pipe(description) |
|
|
|
generated_file_path = "./awesome.wav" |
|
|
|
if os.path.exists(generated_file_path): |
|
return generated_file_path |
|
else: |
|
return "Error: Failed to generate the waveform." |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_waveform, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter a music description here..."), |
|
outputs=gr.Audio(label="Download the Music 🎼"), |
|
title="Flux Music Diffusion Pipeline", |
|
description="Enter a music description, and the model will generate a corresponding audio waveform. Download the output as 'awesome.wav'.", |
|
examples=[ |
|
["a guitar like pop"], |
|
["a man singing jazz"] |
|
], |
|
cache_examples=True |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|