Spaces:
Sleeping
Sleeping
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import gradio as gr | |
from examples import examples | |
from project_settings import project_path | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--examples_dir", | |
default=(project_path / "data/examples").as_posix(), | |
type=str | |
) | |
parser.add_argument( | |
"--trained_model_dir", | |
default=(project_path / "trained_models").as_posix(), | |
type=str | |
) | |
args = parser.parse_args() | |
return args | |
def update_model_dropdown(language: str): | |
if language in language_to_models: | |
choices = language_to_models[language] | |
return gr.Dropdown( | |
choices=choices, | |
value=choices[0], | |
interactive=True, | |
) | |
raise ValueError(f"Unsupported language: {language}") | |
def main(): | |
title = "# Automatic Speech Recognition with Next-gen Kaldi" | |
language_choices = ["Chinese"] | |
language_to_models = { | |
"Chinese": ["None"] | |
} | |
# components | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=language_to_models[language_choices[0]], | |
label="Select a model", | |
value=language_to_models[language_choices[0]][0], | |
) | |
language_radio.change( | |
update_model_dropdown, | |
inputs=language_radio, | |
outputs=model_dropdown, | |
) | |
# blocks | |
with gr.Blocks() as blocks: | |
gr.Markdown(value=title) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
uploaded_file = gr.Audio( | |
sources=["upload"], | |
type="filepath", | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for recognition") | |
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
punct_radio, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_uploaded_file, | |
) | |
blocks.queue().launch() | |
return | |
if __name__ == "__main__": | |
main() | |