Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import os | |
from pathlib import Path | |
import sys | |
pwd = os.path.abspath(os.path.dirname(__file__)) | |
sys.path.append(os.path.join(pwd, "../../")) | |
import huggingface_hub | |
import sherpa | |
from project_settings import project_path | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--repo_id", | |
default="csukuangfj/wenet-chinese-model", | |
# default="csukuangfj/wenet-english-model", | |
type=str | |
) | |
parser.add_argument("--model_filename", default="final.zip", type=str) | |
parser.add_argument("--tokens_filename", default="units.txt", type=str) | |
parser.add_argument( | |
"--pretrained_model_dir", | |
default=(project_path / "pretrained_models").as_posix(), | |
type=str | |
) | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = get_args() | |
pretrained_model_dir = Path(args.pretrained_model_dir) | |
pretrained_model_dir.mkdir(exist_ok=True) | |
model_dir = pretrained_model_dir / "huggingface" / args.repo_id | |
model_dir.mkdir(exist_ok=True) | |
print("download model") | |
model_filename = huggingface_hub.hf_hub_download( | |
repo_id=args.repo_id, | |
filename=args.model_filename, | |
subfolder=".", | |
local_dir=model_dir.as_posix(), | |
) | |
print(model_filename) | |
print("download tokens") | |
tokens_filename = huggingface_hub.hf_hub_download( | |
repo_id=args.repo_id, | |
filename=args.tokens_filename, | |
subfolder=".", | |
local_dir=model_dir.as_posix(), | |
) | |
print(tokens_filename) | |
feat_config = sherpa.FeatureConfig(normalize_samples=False) | |
feat_config.fbank_opts.frame_opts.samp_freq = 16000 | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=model_filename, | |
tokens=tokens_filename, | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method="greedy_search", | |
num_active_paths=2, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
print(recognizer) | |
return | |
if __name__ == "__main__": | |
main() | |