Spaces:
Running
Running
update
Browse files- exception.py +8 -0
- log.py +110 -0
- main.py +133 -17
- project_settings.py +3 -0
- toolbox/__init__.py +5 -0
- toolbox/k2_sherpa/__init__.py +5 -0
- decode.py β toolbox/k2_sherpa/decode.py +0 -0
- examples.py β toolbox/k2_sherpa/examples.py +0 -0
- models.py β toolbox/k2_sherpa/models.py +26 -16
- toolbox/k2_sherpa/utils.py +24 -0
exception.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
class ExpectedError(Exception):
|
4 |
+
def __init__(self, status_code, message, traceback="", detail=""):
|
5 |
+
self.status_code = status_code
|
6 |
+
self.message = message
|
7 |
+
self.traceback = traceback
|
8 |
+
self.detail = detail
|
log.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import logging
|
4 |
+
from logging.handlers import TimedRotatingFileHandler
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
+
def setup(log_directory: str):
|
9 |
+
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
|
10 |
+
|
11 |
+
stream_handler = logging.StreamHandler()
|
12 |
+
stream_handler.setLevel(logging.INFO)
|
13 |
+
stream_handler.setFormatter(logging.Formatter(fmt))
|
14 |
+
|
15 |
+
# main
|
16 |
+
main_logger = logging.getLogger("main")
|
17 |
+
main_logger.addHandler(stream_handler)
|
18 |
+
main_info_file_handler = TimedRotatingFileHandler(
|
19 |
+
filename=os.path.join(log_directory, "main.log"),
|
20 |
+
encoding="utf-8",
|
21 |
+
when="midnight",
|
22 |
+
interval=1,
|
23 |
+
backupCount=30
|
24 |
+
)
|
25 |
+
main_info_file_handler.setLevel(logging.INFO)
|
26 |
+
main_info_file_handler.setFormatter(logging.Formatter(fmt))
|
27 |
+
main_logger.addHandler(main_info_file_handler)
|
28 |
+
|
29 |
+
# http
|
30 |
+
http_logger = logging.getLogger("http")
|
31 |
+
http_file_handler = TimedRotatingFileHandler(
|
32 |
+
filename=os.path.join(log_directory, "http.log"),
|
33 |
+
encoding='utf-8',
|
34 |
+
when="midnight",
|
35 |
+
interval=1,
|
36 |
+
backupCount=30
|
37 |
+
)
|
38 |
+
http_file_handler.setLevel(logging.DEBUG)
|
39 |
+
http_file_handler.setFormatter(logging.Formatter(fmt))
|
40 |
+
http_logger.addHandler(http_file_handler)
|
41 |
+
|
42 |
+
# api
|
43 |
+
api_logger = logging.getLogger("api")
|
44 |
+
api_file_handler = TimedRotatingFileHandler(
|
45 |
+
filename=os.path.join(log_directory, "api.log"),
|
46 |
+
encoding='utf-8',
|
47 |
+
when="midnight",
|
48 |
+
interval=1,
|
49 |
+
backupCount=30
|
50 |
+
)
|
51 |
+
api_file_handler.setLevel(logging.DEBUG)
|
52 |
+
api_file_handler.setFormatter(logging.Formatter(fmt))
|
53 |
+
api_logger.addHandler(api_file_handler)
|
54 |
+
|
55 |
+
# alarm
|
56 |
+
alarm_logger = logging.getLogger("alarm")
|
57 |
+
alarm_file_handler = TimedRotatingFileHandler(
|
58 |
+
filename=os.path.join(log_directory, "alarm.log"),
|
59 |
+
encoding="utf-8",
|
60 |
+
when="midnight",
|
61 |
+
interval=1,
|
62 |
+
backupCount=30
|
63 |
+
)
|
64 |
+
alarm_file_handler.setLevel(logging.DEBUG)
|
65 |
+
alarm_file_handler.setFormatter(logging.Formatter(fmt))
|
66 |
+
alarm_logger.addHandler(alarm_file_handler)
|
67 |
+
|
68 |
+
debug_file_handler = TimedRotatingFileHandler(
|
69 |
+
filename=os.path.join(log_directory, "debug.log"),
|
70 |
+
encoding="utf-8",
|
71 |
+
when="D",
|
72 |
+
interval=1,
|
73 |
+
backupCount=7
|
74 |
+
)
|
75 |
+
debug_file_handler.setLevel(logging.DEBUG)
|
76 |
+
debug_file_handler.setFormatter(logging.Formatter(fmt))
|
77 |
+
|
78 |
+
info_file_handler = TimedRotatingFileHandler(
|
79 |
+
filename=os.path.join(log_directory, "info.log"),
|
80 |
+
encoding="utf-8",
|
81 |
+
when="D",
|
82 |
+
interval=1,
|
83 |
+
backupCount=7
|
84 |
+
)
|
85 |
+
info_file_handler.setLevel(logging.INFO)
|
86 |
+
info_file_handler.setFormatter(logging.Formatter(fmt))
|
87 |
+
|
88 |
+
error_file_handler = TimedRotatingFileHandler(
|
89 |
+
filename=os.path.join(log_directory, "error.log"),
|
90 |
+
encoding="utf-8",
|
91 |
+
when="D",
|
92 |
+
interval=1,
|
93 |
+
backupCount=7
|
94 |
+
)
|
95 |
+
error_file_handler.setLevel(logging.ERROR)
|
96 |
+
error_file_handler.setFormatter(logging.Formatter(fmt))
|
97 |
+
|
98 |
+
logging.basicConfig(
|
99 |
+
level=logging.DEBUG,
|
100 |
+
datefmt="%a, %d %b %Y %H:%M:%S",
|
101 |
+
handlers=[
|
102 |
+
debug_file_handler,
|
103 |
+
info_file_handler,
|
104 |
+
error_file_handler,
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
pass
|
main.py
CHANGED
@@ -2,25 +2,36 @@
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import argparse
|
4 |
from collections import defaultdict
|
|
|
|
|
|
|
|
|
|
|
5 |
import platform
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import gradio as gr
|
|
|
|
|
8 |
|
9 |
-
from examples import examples
|
10 |
-
from
|
11 |
-
from
|
|
|
|
|
12 |
|
13 |
|
14 |
def get_args():
|
15 |
parser = argparse.ArgumentParser()
|
|
|
16 |
parser.add_argument(
|
17 |
-
"--
|
18 |
-
default=(project_path / "
|
19 |
-
type=str
|
20 |
-
)
|
21 |
-
parser.add_argument(
|
22 |
-
"--trained_model_dir",
|
23 |
-
default=(project_path / "trained_models").as_posix(),
|
24 |
type=str
|
25 |
)
|
26 |
args = parser.parse_args()
|
@@ -28,10 +39,10 @@ def get_args():
|
|
28 |
|
29 |
|
30 |
def update_model_dropdown(language: str):
|
31 |
-
if language not in model_map.keys():
|
32 |
raise ValueError(f"Unsupported language: {language}")
|
33 |
|
34 |
-
choices = model_map[language]
|
35 |
choices = [c["repo_id"] for c in choices]
|
36 |
return gr.Dropdown(
|
37 |
choices=choices,
|
@@ -50,14 +61,109 @@ def build_html_output(s: str, style: str = "result_item_success"):
|
|
50 |
"""
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
def process_uploaded_file(language: str,
|
54 |
repo_id: str,
|
55 |
decoding_method: str,
|
56 |
num_active_paths: int,
|
57 |
add_punctuation: str,
|
58 |
in_filename: str,
|
|
|
59 |
):
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
# css style is copied from
|
@@ -71,12 +177,22 @@ css = """
|
|
71 |
|
72 |
|
73 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
title = "# Automatic Speech Recognition with Next-gen Kaldi"
|
75 |
|
76 |
-
language_choices = list(model_map.keys())
|
77 |
|
78 |
language_to_models = defaultdict(list)
|
79 |
-
for k, v in model_map.items():
|
80 |
for m in v:
|
81 |
repo_id = m["repo_id"]
|
82 |
language_to_models[k].append(repo_id)
|
@@ -134,11 +250,11 @@ def main():
|
|
134 |
uploaded_file,
|
135 |
],
|
136 |
outputs=[uploaded_output, uploaded_html_info],
|
137 |
-
fn=
|
138 |
)
|
139 |
|
140 |
upload_button.click(
|
141 |
-
|
142 |
inputs=[
|
143 |
language_radio,
|
144 |
model_dropdown,
|
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import argparse
|
4 |
from collections import defaultdict
|
5 |
+
from datetime import datetime
|
6 |
+
import functools
|
7 |
+
import io
|
8 |
+
import logging
|
9 |
+
from pathlib import Path
|
10 |
import platform
|
11 |
+
import time
|
12 |
+
|
13 |
+
from project_settings import project_path, log_directory
|
14 |
+
import log
|
15 |
+
|
16 |
+
log.setup(log_directory=log_directory)
|
17 |
|
18 |
import gradio as gr
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
|
22 |
+
from toolbox.k2_sherpa.examples import examples
|
23 |
+
from toolbox.k2_sherpa import decode, models
|
24 |
+
from toolbox.k2_sherpa.utils import audio_convert
|
25 |
+
|
26 |
+
main_logger = logging.getLogger("main")
|
27 |
|
28 |
|
29 |
def get_args():
|
30 |
parser = argparse.ArgumentParser()
|
31 |
+
|
32 |
parser.add_argument(
|
33 |
+
"--pretrained_model_dir",
|
34 |
+
default=(project_path / "pretrained_models").as_posix(),
|
|
|
|
|
|
|
|
|
|
|
35 |
type=str
|
36 |
)
|
37 |
args = parser.parse_args()
|
|
|
39 |
|
40 |
|
41 |
def update_model_dropdown(language: str):
|
42 |
+
if language not in models.model_map.keys():
|
43 |
raise ValueError(f"Unsupported language: {language}")
|
44 |
|
45 |
+
choices = models.model_map[language]
|
46 |
choices = [c["repo_id"] for c in choices]
|
47 |
return gr.Dropdown(
|
48 |
choices=choices,
|
|
|
61 |
"""
|
62 |
|
63 |
|
64 |
+
@torch.no_grad()
|
65 |
+
def process(
|
66 |
+
language: str,
|
67 |
+
repo_id: str,
|
68 |
+
decoding_method: str,
|
69 |
+
num_active_paths: int,
|
70 |
+
add_punctuation: str,
|
71 |
+
in_filename: str,
|
72 |
+
pretrained_model_dir: Path,
|
73 |
+
):
|
74 |
+
main_logger.info("language: {}".format(language))
|
75 |
+
main_logger.info("repo_id: {}".format(repo_id))
|
76 |
+
main_logger.info("decoding_method: {}".format(decoding_method))
|
77 |
+
main_logger.info("num_active_paths: {}".format(num_active_paths))
|
78 |
+
main_logger.info("in_filename: {}".format(in_filename))
|
79 |
+
|
80 |
+
m_list = models.model_map.get(language)
|
81 |
+
if m_list is None:
|
82 |
+
raise AssertionError("language invalid: {}".format(language))
|
83 |
+
|
84 |
+
m_dict = None
|
85 |
+
for m in m_list:
|
86 |
+
if m["repo_id"] == repo_id:
|
87 |
+
m_dict = m
|
88 |
+
if m_dict is None:
|
89 |
+
raise AssertionError("repo_id invalid: {}".format(repo_id))
|
90 |
+
|
91 |
+
local_model_dir = pretrained_model_dir / "huggingface" / repo_id
|
92 |
+
|
93 |
+
out_filename = io.BytesIO()
|
94 |
+
audio_convert(in_filename, out_filename)
|
95 |
+
|
96 |
+
recognizer = models.load_recognizer(
|
97 |
+
repo_id=m_dict["repo_id"],
|
98 |
+
nn_model_file=m_dict["nn_model_file"],
|
99 |
+
tokens_file=m_dict["tokens_file"],
|
100 |
+
sub_folder=m_dict["sub_folder"],
|
101 |
+
local_model_dir=local_model_dir,
|
102 |
+
recognizer_type=m_dict["recognizer_type"],
|
103 |
+
decoding_method=decoding_method,
|
104 |
+
num_active_paths=num_active_paths,
|
105 |
+
)
|
106 |
+
|
107 |
+
now = datetime.now()
|
108 |
+
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
109 |
+
logging.info(f"Started at {date_time}")
|
110 |
+
start = time.time()
|
111 |
+
|
112 |
+
text = decode.decode_by_recognizer(recognizer=recognizer,
|
113 |
+
filename=out_filename,
|
114 |
+
)
|
115 |
+
|
116 |
+
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
117 |
+
end = time.time()
|
118 |
+
|
119 |
+
metadata = torchaudio.info(out_filename)
|
120 |
+
duration = metadata.num_frames / 16000
|
121 |
+
rtf = (end - start) / duration
|
122 |
+
|
123 |
+
main_logger.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
|
124 |
+
|
125 |
+
info = f"""
|
126 |
+
Wave duration : {duration: .3f} s <br/>
|
127 |
+
Processing time: {end - start: .3f} s <br/>
|
128 |
+
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
|
129 |
+
"""
|
130 |
+
|
131 |
+
main_logger.info(info)
|
132 |
+
main_logger.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
|
133 |
+
|
134 |
+
return text, build_html_output(info)
|
135 |
+
|
136 |
+
|
137 |
def process_uploaded_file(language: str,
|
138 |
repo_id: str,
|
139 |
decoding_method: str,
|
140 |
num_active_paths: int,
|
141 |
add_punctuation: str,
|
142 |
in_filename: str,
|
143 |
+
pretrained_model_dir: Path,
|
144 |
):
|
145 |
+
if in_filename is None or in_filename == "":
|
146 |
+
return "", build_html_output(
|
147 |
+
"Please first upload a file and then click "
|
148 |
+
'the button "submit for recognition"',
|
149 |
+
"result_item_error",
|
150 |
+
)
|
151 |
+
main_logger.info(f"Processing uploaded file: {in_filename}")
|
152 |
+
|
153 |
+
try:
|
154 |
+
return process(
|
155 |
+
in_filename=in_filename,
|
156 |
+
language=language,
|
157 |
+
repo_id=repo_id,
|
158 |
+
decoding_method=decoding_method,
|
159 |
+
num_active_paths=num_active_paths,
|
160 |
+
add_punctuation=add_punctuation,
|
161 |
+
pretrained_model_dir=pretrained_model_dir,
|
162 |
+
)
|
163 |
+
except Exception as e:
|
164 |
+
msg = "transcribe error: {}".format(str(e))
|
165 |
+
main_logger.info(msg)
|
166 |
+
return "", build_html_output(msg, "result_item_error")
|
167 |
|
168 |
|
169 |
# css style is copied from
|
|
|
177 |
|
178 |
|
179 |
def main():
|
180 |
+
args = get_args()
|
181 |
+
|
182 |
+
pretrained_model_dir = Path(args.pretrained_model_dir)
|
183 |
+
pretrained_model_dir.mkdir(exist_ok=True)
|
184 |
+
|
185 |
+
process_uploaded_file_ = functools.partial(
|
186 |
+
process_uploaded_file,
|
187 |
+
pretrained_model_dir=pretrained_model_dir,
|
188 |
+
)
|
189 |
+
|
190 |
title = "# Automatic Speech Recognition with Next-gen Kaldi"
|
191 |
|
192 |
+
language_choices = list(models.model_map.keys())
|
193 |
|
194 |
language_to_models = defaultdict(list)
|
195 |
+
for k, v in models.model_map.items():
|
196 |
for m in v:
|
197 |
repo_id = m["repo_id"]
|
198 |
language_to_models[k].append(repo_id)
|
|
|
250 |
uploaded_file,
|
251 |
],
|
252 |
outputs=[uploaded_output, uploaded_html_info],
|
253 |
+
fn=process_uploaded_file_,
|
254 |
)
|
255 |
|
256 |
upload_button.click(
|
257 |
+
process_uploaded_file_,
|
258 |
inputs=[
|
259 |
language_radio,
|
260 |
model_dropdown,
|
project_settings.py
CHANGED
@@ -7,6 +7,9 @@ from pathlib import Path
|
|
7 |
project_path = os.path.abspath(os.path.dirname(__file__))
|
8 |
project_path = Path(project_path)
|
9 |
|
|
|
|
|
|
|
10 |
temp_directory = project_path / "temp"
|
11 |
temp_directory.mkdir(parents=True, exist_ok=True)
|
12 |
|
|
|
7 |
project_path = os.path.abspath(os.path.dirname(__file__))
|
8 |
project_path = Path(project_path)
|
9 |
|
10 |
+
log_directory = project_path / "log"
|
11 |
+
log_directory.mkdir(parents=True, exist_ok=True)
|
12 |
+
|
13 |
temp_directory = project_path / "temp"
|
14 |
temp_directory.mkdir(parents=True, exist_ok=True)
|
15 |
|
toolbox/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
if __name__ == "__main__":
|
5 |
+
pass
|
toolbox/k2_sherpa/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
if __name__ == "__main__":
|
5 |
+
pass
|
decode.py β toolbox/k2_sherpa/decode.py
RENAMED
File without changes
|
examples.py β toolbox/k2_sherpa/examples.py
RENAMED
File without changes
|
models.py β toolbox/k2_sherpa/models.py
RENAMED
@@ -24,35 +24,36 @@ model_map = {
|
|
24 |
"Chinese": [
|
25 |
{
|
26 |
"repo_id": "csukuangfj/wenet-chinese-model",
|
27 |
-
"
|
28 |
"tokens_file": "units.txt",
|
29 |
"subfolder": ".",
|
|
|
30 |
}
|
31 |
]
|
32 |
}
|
33 |
|
34 |
|
35 |
def download_model(repo_id: str,
|
36 |
-
|
37 |
-
|
38 |
sub_folder: str,
|
39 |
local_model_dir: str,
|
40 |
):
|
41 |
|
42 |
-
|
43 |
repo_id=repo_id,
|
44 |
-
filename=
|
45 |
subfolder=sub_folder,
|
46 |
local_dir=local_model_dir,
|
47 |
)
|
48 |
|
49 |
-
|
50 |
repo_id=repo_id,
|
51 |
-
filename=
|
52 |
subfolder=sub_folder,
|
53 |
local_dir=local_model_dir,
|
54 |
)
|
55 |
-
return
|
56 |
|
57 |
|
58 |
@lru_cache(maxsize=10)
|
@@ -82,25 +83,34 @@ def load_sherpa_offline_recognizer(nn_model_file: str,
|
|
82 |
return recognizer
|
83 |
|
84 |
|
85 |
-
def load_recognizer(
|
86 |
-
|
87 |
-
|
88 |
-
tokens_filename: str,
|
89 |
sub_folder: str,
|
90 |
local_model_dir: str,
|
91 |
-
recognizer_type:
|
92 |
decoding_method: EnumDecodingMethod = EnumDecodingMethod.greedy_search,
|
|
|
93 |
):
|
94 |
if not os.path.exists(local_model_dir):
|
95 |
download_model(
|
96 |
repo_id=repo_id,
|
97 |
-
|
98 |
-
|
99 |
sub_folder=sub_folder,
|
100 |
local_model_dir=local_model_dir,
|
101 |
)
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
24 |
"Chinese": [
|
25 |
{
|
26 |
"repo_id": "csukuangfj/wenet-chinese-model",
|
27 |
+
"nn_model_file": "final.zip",
|
28 |
"tokens_file": "units.txt",
|
29 |
"subfolder": ".",
|
30 |
+
"recognizer_type": EnumRecognizerType.sherpa_offline_recognizer.value,
|
31 |
}
|
32 |
]
|
33 |
}
|
34 |
|
35 |
|
36 |
def download_model(repo_id: str,
|
37 |
+
nn_model_file: str,
|
38 |
+
tokens_file: str,
|
39 |
sub_folder: str,
|
40 |
local_model_dir: str,
|
41 |
):
|
42 |
|
43 |
+
nn_model_file = huggingface_hub.hf_hub_download(
|
44 |
repo_id=repo_id,
|
45 |
+
filename=nn_model_file,
|
46 |
subfolder=sub_folder,
|
47 |
local_dir=local_model_dir,
|
48 |
)
|
49 |
|
50 |
+
tokens_file = huggingface_hub.hf_hub_download(
|
51 |
repo_id=repo_id,
|
52 |
+
filename=tokens_file,
|
53 |
subfolder=sub_folder,
|
54 |
local_dir=local_model_dir,
|
55 |
)
|
56 |
+
return nn_model_file, tokens_file
|
57 |
|
58 |
|
59 |
@lru_cache(maxsize=10)
|
|
|
83 |
return recognizer
|
84 |
|
85 |
|
86 |
+
def load_recognizer(repo_id: str,
|
87 |
+
nn_model_file: str,
|
88 |
+
tokens_file: str,
|
|
|
89 |
sub_folder: str,
|
90 |
local_model_dir: str,
|
91 |
+
recognizer_type: str,
|
92 |
decoding_method: EnumDecodingMethod = EnumDecodingMethod.greedy_search,
|
93 |
+
num_active_paths: int = 4,
|
94 |
):
|
95 |
if not os.path.exists(local_model_dir):
|
96 |
download_model(
|
97 |
repo_id=repo_id,
|
98 |
+
nn_model_file=nn_model_file,
|
99 |
+
tokens_file=tokens_file,
|
100 |
sub_folder=sub_folder,
|
101 |
local_model_dir=local_model_dir,
|
102 |
)
|
103 |
|
104 |
+
if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value:
|
105 |
+
recognizer = load_sherpa_offline_recognizer(
|
106 |
+
nn_model_file=nn_model_file,
|
107 |
+
tokens_file=tokens_file,
|
108 |
+
decoding_method=decoding_method,
|
109 |
+
num_active_paths=num_active_paths,
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
raise NotImplementedError("recognizer_type not support: {}".format(recognizer_type.value))
|
113 |
+
return recognizer
|
114 |
|
115 |
|
116 |
if __name__ == "__main__":
|
toolbox/k2_sherpa/utils.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from scipy.io import wavfile
|
6 |
+
|
7 |
+
|
8 |
+
def audio_convert(in_filename: str,
|
9 |
+
out_filename: str,
|
10 |
+
sample_rate: int = 16000):
|
11 |
+
signal, _ = librosa.load(in_filename, sr=sample_rate)
|
12 |
+
signal *= 32768.0
|
13 |
+
signal = np.array(signal, dtype=np.int16)
|
14 |
+
|
15 |
+
wavfile.write(
|
16 |
+
out_filename,
|
17 |
+
rate=sample_rate,
|
18 |
+
data=signal
|
19 |
+
)
|
20 |
+
return out_filename
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
pass
|