Spaces:
Configuration error
Configuration error
introvoyz041
commited on
Commit
•
3f31c34
1
Parent(s):
6d0a2f9
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .github/workflows/issue-translator.yml +18 -0
- .gitignore +4 -0
- LICENSE +674 -0
- README.md +176 -12
- __pycache__/cfg.cpython-37.pyc +0 -0
- __pycache__/cfg.cpython-38.pyc +0 -0
- __pycache__/dataset.cpython-37.pyc +0 -0
- __pycache__/dataset.cpython-38.pyc +0 -0
- __pycache__/function.cpython-37.pyc +0 -0
- __pycache__/function.cpython-38.pyc +0 -0
- __pycache__/utils.cpython-37.pyc +0 -0
- __pycache__/utils.cpython-38.pyc +0 -0
- cfg.py +59 -0
- conf/__init__.py +15 -0
- conf/__pycache__/__init__.cpython-37.pyc +0 -0
- conf/__pycache__/__init__.cpython-38.pyc +0 -0
- conf/__pycache__/global_settings.cpython-37.pyc +0 -0
- conf/__pycache__/global_settings.cpython-38.pyc +0 -0
- conf/global_settings.py +54 -0
- dataset/__init__.py +230 -0
- dataset/__pycache__/__init__.cpython-37.pyc +0 -0
- dataset/__pycache__/atlas.cpython-37.pyc +0 -0
- dataset/__pycache__/brat.cpython-37.pyc +0 -0
- dataset/__pycache__/ddti.cpython-37.pyc +0 -0
- dataset/__pycache__/isic.cpython-37.pyc +0 -0
- dataset/__pycache__/kits.cpython-37.pyc +0 -0
- dataset/__pycache__/lidc.cpython-37.pyc +0 -0
- dataset/__pycache__/pendal.cpython-37.pyc +0 -0
- dataset/__pycache__/refuge.cpython-37.pyc +0 -0
- dataset/__pycache__/segrap.cpython-37.pyc +0 -0
- dataset/__pycache__/stare.cpython-37.pyc +0 -0
- dataset/__pycache__/toothfairy.cpython-37.pyc +0 -0
- dataset/__pycache__/wbc.cpython-37.pyc +0 -0
- dataset/atlas.py +86 -0
- dataset/brat.py +90 -0
- dataset/ddti.py +99 -0
- dataset/isic.py +78 -0
- dataset/kits.py +87 -0
- dataset/lidc.py +96 -0
- dataset/lnq.py +80 -0
- dataset/pendal.py +71 -0
- dataset/refuge.py +91 -0
- dataset/segrap.py +65 -0
- dataset/stare.py +75 -0
- dataset/toothfairy.py +80 -0
- dataset/wbc.py +65 -0
- environment.yml +319 -0
- figs/EfficientSAM/EfficientSAM-S (ISIC)_loss.png +0 -0
- figs/EfficientSAM/EfficientSAM-S (ISIC)_performance.png +0 -0
- figs/EfficientSAM/EfficientSAM-S (REFUGE)_loss.png +0 -0
.github/workflows/issue-translator.yml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 'issue-translator'
|
2 |
+
on:
|
3 |
+
issue_comment:
|
4 |
+
types: [created]
|
5 |
+
issues:
|
6 |
+
types: [opened]
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
steps:
|
12 |
+
- uses: usthe/[email protected]
|
13 |
+
with:
|
14 |
+
IS_MODIFY_TITLE: false
|
15 |
+
# not require, default false, . Decide whether to modify the issue title
|
16 |
+
# if true, the robot account @Issues-translate-bot must have modification permissions, invite @Issues-translate-bot to your project or use your custom bot.
|
17 |
+
CUSTOM_BOT_NOTE: Bot detected the issue body's language is not English, translate it automatically. 👯👭🏻🧑🤝🧑👫🧑🏿🤝🧑🏻👩🏾🤝👨🏿👬🏿
|
18 |
+
# not require. Customize the translation robot prefix message.
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/checkpoint
|
2 |
+
/logs
|
3 |
+
/runs
|
4 |
+
pipline.sh
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
CHANGED
@@ -1,12 +1,176 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1 align="center">● Medical SAM Adapter</h1>
|
2 |
+
|
3 |
+
<p align="center">
|
4 |
+
<a href="https://discord.gg/DN4rvk95CC">
|
5 |
+
<img alt="Discord" src="https://img.shields.io/discord/1146610656779440188?logo=discord&style=flat&logoColor=white"/></a>
|
6 |
+
<img src="https://img.shields.io/static/v1?label=license&message=GPL&color=white&style=flat" alt="License"/>
|
7 |
+
</p>
|
8 |
+
|
9 |
+
Medical SAM Adapter, or say MSA, is a project to fineturn [SAM](https://github.com/facebookresearch/segment-anything) using [Adaption](https://lightning.ai/pages/community/tutorial/lora-llm/) for the Medical Imaging.
|
10 |
+
This method is elaborated on the paper [Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation](https://arxiv.org/abs/2304.12620).
|
11 |
+
|
12 |
+
## A Quick Overview
|
13 |
+
<img width="880" height="380" src="https://github.com/WuJunde/Medical-SAM-Adapter/blob/main/figs/medsamadpt.jpeg">
|
14 |
+
|
15 |
+
## News
|
16 |
+
- [TOP] Join in our [Discord](https://discord.gg/EqbgSPEX) to ask questions and discuss with others.
|
17 |
+
- [TOP] 24-03-02 We have released our pre-trained Adapters in [Medical-Adapter-Zoo](https://huggingface.co/KidsWithTokens/Medical-Adapter-Zoo/tree/main). Try it without painful training 😉 Credit: @shinning0821
|
18 |
+
- 23-05-10. This project is still quickly updating 🌝. Check TODO list to see what will be released next.
|
19 |
+
- 23-05-11. GitHub Dicussion opened. You guys can now talk, code and make friends on the playground 👨❤️👨.
|
20 |
+
- 23-12-22. Released data loader and example case on [REFUGE](https://refuge.grand-challenge.org/) dataset. Credit: @jiayuanz3
|
21 |
+
- 24-01-04. Released the Efficient Med-SAM-Adapter❗️ A new, faster, and more lightweight version incorporates Meta [EfficientSAM](https://yformer.github.io/efficient-sam/)🏇. Full credit goes to @shinning0821.
|
22 |
+
- 24-01-07. The image resolution now can be resized by ``-image_size``. Credit: @shinning0821
|
23 |
+
- 24-01-11. Added a detailed guide on utilizing the Efficient Med-SAM-Adapter, complete with a comparison of performance and speed. You can find this resource in [guidance/efficient_sam.ipynb](./guidance/efficient_sam.ipynb). Credit: @shinning0821
|
24 |
+
- 24-01-14. We've just launched our first official version, v0.1.0-alpha 🥳. This release includes support for [MobileSAM](https://github.com/ChaoningZhang/MobileSAM), which can be activated by setting ``-net mobile_sam``. Additionally, you now have the flexibility to use ViT, Tiny ViT, and Efficient ViT as encoders. Check the details [here](https://github.com/KidsWithTokens/Medical-SAM-Adapter/releases/tag/v0.1.0-alpha). Credit: @shinning0821
|
25 |
+
- 24-01-20. Added a guide on utilizing the mobile sam in Med-SAM-Adapter, with a comparison of performance and speed. You can find it in [guidance/mobile_sam.ipynb](https://github.com/KidsWithTokens/Medical-SAM-Adapter/blob/main/guidance/mobile_sam.ipynb) Credit: @shinning0821
|
26 |
+
- 24-01-21. We've added [LoRA](https://huggingface.co/docs/diffusers/training/lora) to our framework🤖. Use it by setting ``-mod`` as ``sam_lora``.
|
27 |
+
A guidance can be found in [here](https://github.com/KidsWithTokens/Medical-SAM-Adapter/blob/main/guidance/lora.ipynb). Credit: @shinning0821
|
28 |
+
- 24-01-22. We've added dataloader for [LIDC dataset](https://paperswithcode.com/dataset/lidc-idri), a multi-rater(4 raters 👨⚕️🧑🏽⚕️👩⚕️🧑🏽⚕️) lesions segmentation from low-dose lung CTs 🩻. You can download the preprocessed LIDC dataset at [here](https://github.com/stefanknegt/Probabilistic-Unet-Pytorch). Also updated environment, and random_click function. Credit: @jiayuanz3
|
29 |
+
- 24-03-06. We've supported multi-class segmentation. Use it by setting ``-multimask_output`` to the number of classes favored. Also updated REFUGE example to two classes (optic disc & cup). Credit: @LJQCN101
|
30 |
+
- 24-03-06. We've supported many other datasets and rebuild the code of datasets and dataloaders. Seen in `guidance/Dataset.md` Credit: @shinning0821
|
31 |
+
|
32 |
+
## Medical Adapter Zoo 🐘🐊🦍🦒🦨🦜🦥
|
33 |
+
We've released a bunch of pre-trained Adapters for various organs/lesions in [Medical-Adapter-Zoo](https://huggingface.co/KidsWithTokens/Medical-Adapter-Zoo/tree/main). Just pick the adapter that matches your disease and easily adjust SAM to suit your specific needs 😉.
|
34 |
+
|
35 |
+
If you can't find what you're looking for. Please suggest it through any contact method available to us (GitHub issue, HuggingFace community, or [Discord](https://discord.gg/EqbgSPEX)). We'll do our very best to include it.
|
36 |
+
|
37 |
+
## Requirement
|
38 |
+
|
39 |
+
Install the environment:
|
40 |
+
|
41 |
+
``conda env create -f environment.yml``
|
42 |
+
|
43 |
+
``conda activate sam_adapt``
|
44 |
+
|
45 |
+
Then download [SAM checkpoint](https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth), and put it at ./checkpoint/sam/
|
46 |
+
|
47 |
+
You can run:
|
48 |
+
|
49 |
+
``wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth``
|
50 |
+
|
51 |
+
``mv sam_vit_b_01ec64.pth ./checkpoint/sam``
|
52 |
+
creat the folder if it does not exist
|
53 |
+
|
54 |
+
## Example Cases
|
55 |
+
|
56 |
+
### Melanoma Segmentation from Skin Images (2D)
|
57 |
+
|
58 |
+
1. Download ISIC dataset part 1 from https://challenge.isic-archive.com/data/. Then put the csv files in "./data/isic" under your data path. Your dataset folder under "your_data_path" should be like:
|
59 |
+
ISIC/
|
60 |
+
ISBI2016_ISIC_Part1_Test_Data/...
|
61 |
+
|
62 |
+
ISBI2016_ISIC_Part1_Training_Data/...
|
63 |
+
|
64 |
+
ISBI2016_ISIC_Part1_Test_GroundTruth.csv
|
65 |
+
|
66 |
+
ISBI2016_ISIC_Part1_Training_GroundTruth.csv
|
67 |
+
|
68 |
+
You can fine the csv files [here](https://github.com/KidsWithTokens/MedSegDiff/tree/master/data/isic_csv)
|
69 |
+
|
70 |
+
3. Begin Adapting! run: ``python train.py -net sam -mod sam_adpt -exp_name *msa_test_isic* -sam_ckpt ./checkpoint/sam/sam_vit_b_01ec64.pth -image_size 1024 -b 32 -dataset isic -data_path *../data*``
|
71 |
+
change "data_path" and "exp_name" for your own useage. you can change "exp_name" to anything you want.
|
72 |
+
|
73 |
+
You can descrease the ``image size`` or batch size ``b`` if out of memory.
|
74 |
+
|
75 |
+
3. Evaluation: The code can automatically evaluate the model on the test set during traing, set "--val_freq" to control how many epoches you want to evaluate once. You can also run val.py for the independent evaluation.
|
76 |
+
|
77 |
+
4. Result Visualization: You can set "--vis" parameter to control how many epoches you want to see the results in the training or evaluation process.
|
78 |
+
|
79 |
+
In default, everything will be saved at `` ./logs/``
|
80 |
+
|
81 |
+
### REFUGE: Optic-disc Segmentation from Fundus Images (2D)
|
82 |
+
[REFUGE](https://refuge.grand-challenge.org/) dataset contains 1200 fundus images with optic disc/cup segmentations and clinical glaucoma labels.
|
83 |
+
|
84 |
+
1. Dowaload the dataset manually from [here](https://huggingface.co/datasets/realslimman/REFUGE-MultiRater/tree/main), or using command lines:
|
85 |
+
|
86 |
+
``git lfs install``
|
87 |
+
|
88 |
+
``git clone [email protected]:datasets/realslimman/REFUGE-MultiRater``
|
89 |
+
|
90 |
+
unzip and put the dataset to the target folder
|
91 |
+
|
92 |
+
``unzip ./REFUGE-MultiRater.zip``
|
93 |
+
|
94 |
+
``mv REFUGE-MultiRater ./data``
|
95 |
+
|
96 |
+
2. For training the adapter, run: ``python train.py -net sam -mod sam_adpt -exp_name REFUGE-MSAdapt -sam_ckpt ./checkpoint/sam/sam_vit_b_01ec64.pth -image_size 1024 -b 32 -dataset REFUGE -data_path ./data/REFUGE-MultiRater``
|
97 |
+
you can change "exp_name" to anything you want.
|
98 |
+
|
99 |
+
You can descrease the ``image size`` or batch size ``b`` if out of memory.
|
100 |
+
|
101 |
+
### Abdominal Multiple Organs Segmentation (3D)
|
102 |
+
|
103 |
+
This tutorial demonstrates how MSA can adapt SAM to 3D multi-organ segmentation task using the BTCV challenge dataset.
|
104 |
+
For BTCV dataset, under Institutional Review Board (IRB) supervision, 50 abdomen CT scans of were randomly selected from a combination of an ongoing colorectal cancer chemotherapy trial, and a retrospective ventral hernia study. The 50 scans were captured during portal venous contrast phase with variable volume sizes (512 x 512 x 85 - 512 x 512 x 198) and field of views (approx. 280 x 280 x 280 mm3 - 500 x 500 x 650 mm3). The in-plane resolution varies from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2, while the slice thickness ranges from 2.5 mm to 5.0 mm.
|
105 |
+
Target: 13 abdominal organs including
|
106 |
+
Spleen
|
107 |
+
Right Kidney
|
108 |
+
Left Kidney
|
109 |
+
Gallbladder
|
110 |
+
Esophagus
|
111 |
+
Liver
|
112 |
+
Stomach
|
113 |
+
Aorta
|
114 |
+
IVC
|
115 |
+
Portal and Splenic Veins
|
116 |
+
Pancreas
|
117 |
+
Right adrenal gland
|
118 |
+
Left adrenal gland.
|
119 |
+
Modality: CT
|
120 |
+
Size: 30 3D volumes (24 Training + 6 Testing)
|
121 |
+
Challenge: BTCV MICCAI Challenge
|
122 |
+
The following figure shows image patches with the organ sub-regions that are annotated in the CT (top left) and the final labels for the whole dataset (right).
|
123 |
+
1. Prepare BTCV dataset following [MONAI](https://docs.monai.io/en/stable/index.html) instruction:
|
124 |
+
Download BTCV dataset from: https://www.synapse.org/#!Synapse:syn3193805/wiki/217752. After you open the link, navigate to the "Files" tab, then download Abdomen/RawData.zip.
|
125 |
+
After downloading the zip file, unzip. Then put images from RawData/Training/img in ../data/imagesTr, and put labels from RawData/Training/label in ../data/labelsTr.
|
126 |
+
Download the json file for data splits from this [link](https://drive.google.com/file/d/1qcGh41p-rI3H_sQ0JwOAhNiQSXriQqGi/view). Place the JSON file at ../data/dataset_0.json.
|
127 |
+
2. For the Adaptation, run: ``python train.py -net sam -mod sam_adpt -exp_name msa-3d-sam-btcv -sam_ckpt ./checkpoint/sam/sam_vit_b_01ec64.pth -image_size 1024 -b 8 -dataset decathlon -thd True -chunk 96 -data_path ../data -num_sample 4``
|
128 |
+
You can modify following parameters to save the memory usage: '-b' the batch size, '-chunk' the 3D depth (channel) for each sample, '-num_sample' number of samples for [Monai.RandCropByPosNegLabeld](https://docs.monai.io/en/stable/transforms.html#randcropbyposneglabeld), 'evl_chunk' the 3D channel split step in the evaluation, decrease it if out of memory in the evaluation.
|
129 |
+
## Run on your own dataset
|
130 |
+
It is simple to run MSA on the other datasets. Just write another dataset class following which in `` ./dataset.py``. You only need to make sure you return a dict with
|
131 |
+
{
|
132 |
+
'image': A tensor saving images with size [C,H,W] for 2D image, size [C, H, W, D] for 3D data.
|
133 |
+
D is the depth of 3D volume, C is the channel of a scan/frame, which is commonly 1 for CT, MRI, US data.
|
134 |
+
If processing, say like a colorful surgical video, D could the number of time frames, and C will be 3 for a RGB frame.
|
135 |
+
'label': The target masks. Same size with the images except the resolutions (H and W).
|
136 |
+
'p_label': The prompt label to decide positive/negative prompt. To simplify, you can always set 1 if don't need the negative prompt function.
|
137 |
+
'pt': The prompt. Should be the same as that in SAM, e.g., a click prompt should be [x of click, y of click], one click for each scan/frame if using 3d data.
|
138 |
+
'image_meta_dict': Optional. if you want save/visulize the result, you should put the name of the image in it with the key ['filename_or_obj'].
|
139 |
+
...(others as you want)
|
140 |
+
}
|
141 |
+
Welcome to open issues if you meet any problem. It would be appreciated if you could contribute your dataset extensions. Unlike natural images, medical images vary a lot depending on different tasks. Expanding the generalization of a method requires everyone's efforts.
|
142 |
+
|
143 |
+
### TODO LIST
|
144 |
+
|
145 |
+
- [ ] Jupyter tutorials.
|
146 |
+
- [x] Fix bugs in BTCV. Add BTCV example.
|
147 |
+
- [ ] Release REFUGE2, BraTs dataloaders and examples
|
148 |
+
- [x] Changable Image Resolution
|
149 |
+
- [ ] Fix bugs in Multi-GPU parallel
|
150 |
+
- [x] Sample and Vis in training
|
151 |
+
- [ ] Release general data pre-processing and post-processing
|
152 |
+
- [x] Release evaluation
|
153 |
+
- [ ] Deploy on HuggingFace
|
154 |
+
- [x] configuration
|
155 |
+
- [ ] Release SSL code
|
156 |
+
- [ ] Release Medical Adapter Zoo
|
157 |
+
|
158 |
+
## Cite
|
159 |
+
~~~
|
160 |
+
@misc{wu2023medical,
|
161 |
+
title={Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation},
|
162 |
+
author={Junde Wu and Wei Ji and Yuanpei Liu and Huazhu Fu and Min Xu and Yanwu Xu and Yueming Jin},
|
163 |
+
year={2023},
|
164 |
+
eprint={2304.12620},
|
165 |
+
archivePrefix={arXiv},
|
166 |
+
primaryClass={cs.CV}
|
167 |
+
}
|
168 |
+
~~~
|
169 |
+
|
170 |
+
## Buy Me A Coffee 🥤😉
|
171 |
+
https://ko-fi.com/jundewu
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
__pycache__/cfg.cpython-37.pyc
ADDED
Binary file (2.7 kB). View file
|
|
__pycache__/cfg.cpython-38.pyc
ADDED
Binary file (2.59 kB). View file
|
|
__pycache__/dataset.cpython-37.pyc
ADDED
Binary file (12.4 kB). View file
|
|
__pycache__/dataset.cpython-38.pyc
ADDED
Binary file (7.39 kB). View file
|
|
__pycache__/function.cpython-37.pyc
ADDED
Binary file (9.27 kB). View file
|
|
__pycache__/function.cpython-38.pyc
ADDED
Binary file (8.86 kB). View file
|
|
__pycache__/utils.cpython-37.pyc
ADDED
Binary file (31.5 kB). View file
|
|
__pycache__/utils.cpython-38.pyc
ADDED
Binary file (30.5 kB). View file
|
|
cfg.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
|
4 |
+
def parse_args():
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument('-net', type=str, default='sam', help='net type')
|
7 |
+
parser.add_argument('-baseline', type=str, default='unet', help='baseline net type')
|
8 |
+
parser.add_argument('-encoder', type=str, default='default', help='encoder type')
|
9 |
+
parser.add_argument('-seg_net', type=str, default='transunet', help='net type')
|
10 |
+
parser.add_argument('-mod', type=str, default='sam_adpt', help='mod type:seg,cls,val_ad')
|
11 |
+
parser.add_argument('-exp_name', default='msa_test_isic', type=str, help='net type')
|
12 |
+
parser.add_argument('-type', type=str, default='map', help='condition type:ave,rand,rand_map')
|
13 |
+
parser.add_argument('-vis', type=int, default=None, help='visualization')
|
14 |
+
parser.add_argument('-reverse', type=bool, default=False, help='adversary reverse')
|
15 |
+
parser.add_argument('-pretrain', type=bool, default=False, help='adversary reverse')
|
16 |
+
parser.add_argument('-val_freq',type=int,default=5,help='interval between each validation')
|
17 |
+
parser.add_argument('-gpu', type=bool, default=True, help='use gpu or not')
|
18 |
+
parser.add_argument('-gpu_device', type=int, default=0, help='use which gpu')
|
19 |
+
parser.add_argument('-sim_gpu', type=int, default=0, help='split sim to this gpu')
|
20 |
+
parser.add_argument('-epoch_ini', type=int, default=1, help='start epoch')
|
21 |
+
parser.add_argument('-image_size', type=int, default=256, help='image_size')
|
22 |
+
parser.add_argument('-out_size', type=int, default=256, help='output_size')
|
23 |
+
parser.add_argument('-patch_size', type=int, default=2, help='patch_size')
|
24 |
+
parser.add_argument('-dim', type=int, default=512, help='dim_size')
|
25 |
+
parser.add_argument('-depth', type=int, default=1, help='depth')
|
26 |
+
parser.add_argument('-heads', type=int, default=16, help='heads number')
|
27 |
+
parser.add_argument('-mlp_dim', type=int, default=1024, help='mlp_dim')
|
28 |
+
parser.add_argument('-w', type=int, default=4, help='number of workers for dataloader')
|
29 |
+
parser.add_argument('-b', type=int, default=2, help='batch size for dataloader')
|
30 |
+
parser.add_argument('-s', type=bool, default=True, help='whether shuffle the dataset')
|
31 |
+
parser.add_argument('-warm', type=int, default=1, help='warm up training phase')
|
32 |
+
parser.add_argument('-lr', type=float, default=1e-4, help='initial learning rate')
|
33 |
+
parser.add_argument('-uinch', type=int, default=1, help='input channel of unet')
|
34 |
+
parser.add_argument('-imp_lr', type=float, default=3e-4, help='implicit learning rate')
|
35 |
+
parser.add_argument('-weights', type=str, default = 0, help='the weights file you want to test')
|
36 |
+
parser.add_argument('-base_weights', type=str, default = 0, help='the weights baseline')
|
37 |
+
parser.add_argument('-sim_weights', type=str, default = 0, help='the weights sim')
|
38 |
+
parser.add_argument('-distributed', default='none' ,type=str,help='multi GPU ids to use')
|
39 |
+
parser.add_argument('-dataset', default='isic' ,type=str,help='dataset name')
|
40 |
+
parser.add_argument('-sam_ckpt', default=None , help='sam checkpoint address')
|
41 |
+
parser.add_argument('-thd', type=bool, default=False , help='3d or not')
|
42 |
+
parser.add_argument('-chunk', type=int, default=None , help='crop volume depth')
|
43 |
+
parser.add_argument('-num_sample', type=int, default=4 , help='sample pos and neg')
|
44 |
+
parser.add_argument('-roi_size', type=int, default=96 , help='resolution of roi')
|
45 |
+
parser.add_argument('-evl_chunk', type=int, default=None , help='evaluation chunk')
|
46 |
+
parser.add_argument('-mid_dim', type=int, default=None , help='middle dim of adapter or the rank of lora matrix')
|
47 |
+
parser.add_argument('-multimask_output', type=int, default=1 , help='the number of masks output for multi-class segmentation, set 2 for REFUGE dataset.')
|
48 |
+
parser.add_argument(
|
49 |
+
'-data_path',
|
50 |
+
type=str,
|
51 |
+
default='../data',
|
52 |
+
help='The path of segmentation data')
|
53 |
+
# '../dataset/RIGA/DiscRegion'
|
54 |
+
# '../dataset/ISIC'
|
55 |
+
opt = parser.parse_args()
|
56 |
+
|
57 |
+
return opt
|
58 |
+
|
59 |
+
# required=True,
|
conf/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" dynamically load settings
|
2 |
+
|
3 |
+
author baiyu
|
4 |
+
"""
|
5 |
+
import conf.global_settings as settings
|
6 |
+
|
7 |
+
|
8 |
+
class Settings:
|
9 |
+
def __init__(self, settings):
|
10 |
+
|
11 |
+
for attr in dir(settings):
|
12 |
+
if attr.isupper():
|
13 |
+
setattr(self, attr, getattr(settings, attr))
|
14 |
+
|
15 |
+
settings = Settings(settings)
|
conf/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (622 Bytes). View file
|
|
conf/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (630 Bytes). View file
|
|
conf/__pycache__/global_settings.cpython-37.pyc
ADDED
Binary file (726 Bytes). View file
|
|
conf/__pycache__/global_settings.cpython-38.pyc
ADDED
Binary file (726 Bytes). View file
|
|
conf/global_settings.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" configurations for this project
|
2 |
+
|
3 |
+
author Junde
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
#CIFAR100 dataset path (python version)
|
9 |
+
#CIFAR100_PATH = '/nfs/private/cifar100/cifar-100-python'
|
10 |
+
|
11 |
+
#mean and std of cifar100 dataset
|
12 |
+
CIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
|
13 |
+
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
|
14 |
+
|
15 |
+
GLAUCOMA_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
|
16 |
+
GLAUCOMA_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
|
17 |
+
|
18 |
+
MASK_TRAIN_MEAN = (2.654204690220496/255)
|
19 |
+
MASK_TRAIN_STD = (21.46473779720519/255)
|
20 |
+
|
21 |
+
#CIFAR100_TEST_MEAN = (0.5088964127604166, 0.48739301317401956, 0.44194221124387256)
|
22 |
+
#CIFAR100_TEST_STD = (0.2682515741720801, 0.2573637364478126, 0.2770957707973042)
|
23 |
+
|
24 |
+
#directory to save weights file
|
25 |
+
CHECKPOINT_PATH = 'checkpoint'
|
26 |
+
|
27 |
+
#total training epoches
|
28 |
+
EPOCH = 100
|
29 |
+
step_size = 10
|
30 |
+
i = 1
|
31 |
+
MILESTONES = []
|
32 |
+
while i * 5 <= EPOCH:
|
33 |
+
MILESTONES.append(i* step_size)
|
34 |
+
i += 1
|
35 |
+
|
36 |
+
#initial learning rate
|
37 |
+
#INIT_LR = 0.1
|
38 |
+
|
39 |
+
#time of we run the script
|
40 |
+
TIME_NOW = datetime.now().strftime("%F_%H-%M-%S.%f")
|
41 |
+
|
42 |
+
#tensorboard log dir
|
43 |
+
LOG_DIR = 'runs'
|
44 |
+
|
45 |
+
#save weights file per SAVE_EPOCH epoch
|
46 |
+
SAVE_EPOCH = 10
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
dataset/__init__.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from torch.utils.data import DataLoader, random_split
|
4 |
+
from torch.utils.data.sampler import SubsetRandomSampler
|
5 |
+
|
6 |
+
from utils import *
|
7 |
+
|
8 |
+
from .atlas import Atlas
|
9 |
+
from .brat import Brat
|
10 |
+
from .ddti import DDTI
|
11 |
+
from .isic import ISIC2016
|
12 |
+
from .kits import KITS
|
13 |
+
from .lidc import LIDC
|
14 |
+
from .lnq import LNQ
|
15 |
+
from .pendal import Pendal
|
16 |
+
from .refuge import REFUGE
|
17 |
+
from .segrap import SegRap
|
18 |
+
from .stare import STARE
|
19 |
+
from .toothfairy import ToothFairy
|
20 |
+
from .wbc import WBC
|
21 |
+
|
22 |
+
|
23 |
+
def get_dataloader(args):
|
24 |
+
transform_train = transforms.Compose([
|
25 |
+
transforms.Resize((args.image_size,args.image_size)),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
])
|
28 |
+
|
29 |
+
transform_train_seg = transforms.Compose([
|
30 |
+
transforms.Resize((args.out_size,args.out_size)),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
])
|
33 |
+
|
34 |
+
transform_test = transforms.Compose([
|
35 |
+
transforms.Resize((args.image_size, args.image_size)),
|
36 |
+
transforms.ToTensor(),
|
37 |
+
])
|
38 |
+
|
39 |
+
transform_test_seg = transforms.Compose([
|
40 |
+
transforms.Resize((args.out_size,args.out_size)),
|
41 |
+
transforms.ToTensor(),
|
42 |
+
])
|
43 |
+
|
44 |
+
if args.dataset == 'isic':
|
45 |
+
'''isic data'''
|
46 |
+
isic_train_dataset = ISIC2016(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
|
47 |
+
isic_test_dataset = ISIC2016(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
|
48 |
+
|
49 |
+
nice_train_loader = DataLoader(isic_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
|
50 |
+
nice_test_loader = DataLoader(isic_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
|
51 |
+
'''end'''
|
52 |
+
|
53 |
+
elif args.dataset == 'decathlon':
|
54 |
+
nice_train_loader, nice_test_loader, transform_train, transform_val, train_list, val_list = get_decath_loader(args)
|
55 |
+
|
56 |
+
|
57 |
+
elif args.dataset == 'REFUGE':
|
58 |
+
'''REFUGE data'''
|
59 |
+
refuge_train_dataset = REFUGE(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
|
60 |
+
refuge_test_dataset = REFUGE(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
|
61 |
+
|
62 |
+
nice_train_loader = DataLoader(refuge_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
|
63 |
+
nice_test_loader = DataLoader(refuge_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
|
64 |
+
'''end'''
|
65 |
+
|
66 |
+
elif args.dataset == 'LIDC':
|
67 |
+
'''LIDC data'''
|
68 |
+
# dataset = LIDC(data_path = args.data_path)
|
69 |
+
dataset = MyLIDC(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
70 |
+
|
71 |
+
dataset_size = len(dataset)
|
72 |
+
indices = list(range(dataset_size))
|
73 |
+
split = int(np.floor(0.2 * dataset_size))
|
74 |
+
np.random.shuffle(indices)
|
75 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
76 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
77 |
+
|
78 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
79 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
80 |
+
'''end'''
|
81 |
+
|
82 |
+
elif args.dataset == 'DDTI':
|
83 |
+
'''DDTI data'''
|
84 |
+
refuge_train_dataset = DDTI(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
|
85 |
+
refuge_test_dataset = DDTI(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
|
86 |
+
|
87 |
+
nice_train_loader = DataLoader(refuge_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
|
88 |
+
nice_test_loader = DataLoader(refuge_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
|
89 |
+
'''end'''
|
90 |
+
|
91 |
+
elif args.dataset == 'Brat':
|
92 |
+
'''Brat data'''
|
93 |
+
dataset = Brat(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
94 |
+
|
95 |
+
dataset_size = len(dataset)
|
96 |
+
indices = list(range(dataset_size))
|
97 |
+
split = int(np.floor(0.3 * dataset_size))
|
98 |
+
np.random.shuffle(indices)
|
99 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
100 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
101 |
+
|
102 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
103 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
104 |
+
'''end'''
|
105 |
+
|
106 |
+
elif args.dataset == 'STARE':
|
107 |
+
'''STARE data'''
|
108 |
+
# dataset = LIDC(data_path = args.data_path)
|
109 |
+
dataset = STARE(args, data_path = args.data_path, transform = transform_train, transform_msk= transform_train_seg)
|
110 |
+
|
111 |
+
dataset_size = len(dataset)
|
112 |
+
indices = list(range(dataset_size))
|
113 |
+
split = int(np.floor(0.2 * dataset_size))
|
114 |
+
np.random.shuffle(indices)
|
115 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
116 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
117 |
+
|
118 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
119 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
120 |
+
'''end'''
|
121 |
+
|
122 |
+
elif args.dataset == 'kits':
|
123 |
+
'''kits data'''
|
124 |
+
dataset = KITS(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
125 |
+
|
126 |
+
dataset_size = len(dataset)
|
127 |
+
indices = list(range(dataset_size))
|
128 |
+
split = int(np.floor(0.3 * dataset_size))
|
129 |
+
np.random.shuffle(indices)
|
130 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
131 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
132 |
+
|
133 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
134 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
135 |
+
'''end'''
|
136 |
+
|
137 |
+
elif args.dataset == 'WBC':
|
138 |
+
'''WBC data'''
|
139 |
+
dataset = WBC(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
140 |
+
|
141 |
+
dataset_size = len(dataset)
|
142 |
+
indices = list(range(dataset_size))
|
143 |
+
split = int(np.floor(0.3 * dataset_size))
|
144 |
+
np.random.shuffle(indices)
|
145 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
146 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
147 |
+
|
148 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
149 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
150 |
+
'''end'''
|
151 |
+
|
152 |
+
elif args.dataset == 'segrap':
|
153 |
+
'''segrap data'''
|
154 |
+
dataset = SegRap(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
155 |
+
|
156 |
+
dataset_size = len(dataset)
|
157 |
+
indices = list(range(dataset_size))
|
158 |
+
split = int(np.floor(0.3 * dataset_size))
|
159 |
+
np.random.shuffle(indices)
|
160 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
161 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
162 |
+
|
163 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
164 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
165 |
+
'''end'''
|
166 |
+
|
167 |
+
elif args.dataset == 'toothfairy':
|
168 |
+
'''toothfairy data'''
|
169 |
+
dataset = ToothFairy(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
170 |
+
|
171 |
+
dataset_size = len(dataset)
|
172 |
+
indices = list(range(dataset_size))
|
173 |
+
split = int(np.floor(0.3 * dataset_size))
|
174 |
+
np.random.shuffle(indices)
|
175 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
176 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
177 |
+
|
178 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
179 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
180 |
+
'''end'''
|
181 |
+
|
182 |
+
elif args.dataset == 'atlas':
|
183 |
+
'''atlas data'''
|
184 |
+
dataset = Atlas(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
185 |
+
|
186 |
+
dataset_size = len(dataset)
|
187 |
+
indices = list(range(dataset_size))
|
188 |
+
split = int(np.floor(0.3 * dataset_size))
|
189 |
+
np.random.shuffle(indices)
|
190 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
191 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
192 |
+
|
193 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
194 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
195 |
+
'''end'''
|
196 |
+
|
197 |
+
elif args.dataset == 'pendal':
|
198 |
+
'''pendal data'''
|
199 |
+
dataset = Pendal(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
200 |
+
|
201 |
+
dataset_size = len(dataset)
|
202 |
+
indices = list(range(dataset_size))
|
203 |
+
split = int(np.floor(0.3 * dataset_size))
|
204 |
+
np.random.shuffle(indices)
|
205 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
206 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
207 |
+
|
208 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
209 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
210 |
+
'''end'''
|
211 |
+
|
212 |
+
elif args.dataset == 'lnq':
|
213 |
+
'''lnq data'''
|
214 |
+
dataset = LNQ(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)
|
215 |
+
|
216 |
+
dataset_size = len(dataset)
|
217 |
+
indices = list(range(dataset_size))
|
218 |
+
split = int(np.floor(0.3 * dataset_size))
|
219 |
+
np.random.shuffle(indices)
|
220 |
+
train_sampler = SubsetRandomSampler(indices[split:])
|
221 |
+
test_sampler = SubsetRandomSampler(indices[:split])
|
222 |
+
|
223 |
+
nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
|
224 |
+
nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
|
225 |
+
'''end'''
|
226 |
+
|
227 |
+
else:
|
228 |
+
print("the dataset is not supported now!!!")
|
229 |
+
|
230 |
+
return nice_train_loader, nice_test_loader
|
dataset/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (3.84 kB). View file
|
|
dataset/__pycache__/atlas.cpython-37.pyc
ADDED
Binary file (1.96 kB). View file
|
|
dataset/__pycache__/brat.cpython-37.pyc
ADDED
Binary file (2.37 kB). View file
|
|
dataset/__pycache__/ddti.cpython-37.pyc
ADDED
Binary file (2.4 kB). View file
|
|
dataset/__pycache__/isic.cpython-37.pyc
ADDED
Binary file (1.91 kB). View file
|
|
dataset/__pycache__/kits.cpython-37.pyc
ADDED
Binary file (1.98 kB). View file
|
|
dataset/__pycache__/lidc.cpython-37.pyc
ADDED
Binary file (3.97 kB). View file
|
|
dataset/__pycache__/pendal.cpython-37.pyc
ADDED
Binary file (1.84 kB). View file
|
|
dataset/__pycache__/refuge.cpython-37.pyc
ADDED
Binary file (3.95 kB). View file
|
|
dataset/__pycache__/segrap.cpython-37.pyc
ADDED
Binary file (1.97 kB). View file
|
|
dataset/__pycache__/stare.cpython-37.pyc
ADDED
Binary file (1.76 kB). View file
|
|
dataset/__pycache__/toothfairy.cpython-37.pyc
ADDED
Binary file (1.94 kB). View file
|
|
dataset/__pycache__/wbc.cpython-37.pyc
ADDED
Binary file (1.77 kB). View file
|
|
dataset/atlas.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
import nibabel as nib
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from PIL import Image
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
|
13 |
+
from utils import generate_click_prompt, random_box, random_click
|
14 |
+
|
15 |
+
|
16 |
+
class Atlas(Dataset):
|
17 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
18 |
+
|
19 |
+
|
20 |
+
self.args = args
|
21 |
+
self.data_path = os.path.join(data_path,'train')
|
22 |
+
with open(os.path.join(self.data_path,'dataset.json'),'r') as file:
|
23 |
+
data = json.load(file)
|
24 |
+
self.name_list = data['training']
|
25 |
+
self.mode = mode
|
26 |
+
self.prompt = prompt
|
27 |
+
self.img_size = args.image_size
|
28 |
+
|
29 |
+
self.transform = transform
|
30 |
+
self.transform_msk = transform_msk
|
31 |
+
|
32 |
+
def __len__(self):
|
33 |
+
return len(self.name_list)
|
34 |
+
|
35 |
+
|
36 |
+
def __getitem__(self, index):
|
37 |
+
point_label = 1
|
38 |
+
label = 1
|
39 |
+
|
40 |
+
"""Get the images"""
|
41 |
+
img_name = self.name_list[index]['image']
|
42 |
+
mask_name = self.name_list[index]['label']
|
43 |
+
|
44 |
+
img = nib.load(os.path.join(self.data_path,img_name)).get_fdata()
|
45 |
+
mask = nib.load(os.path.join(self.data_path,mask_name)).get_fdata()
|
46 |
+
|
47 |
+
mask[mask!=label] = 0
|
48 |
+
mask[mask==label] = 1
|
49 |
+
# if self.mode == 'Training':
|
50 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
51 |
+
# else:
|
52 |
+
# label = int(self.label_list[index])
|
53 |
+
img = np.transpose(img,(1,2,0))
|
54 |
+
mask = np.transpose(mask,(1,2,0))
|
55 |
+
|
56 |
+
# img = np.resize(mask,(self.args.image_size, self.args.image_size,128))
|
57 |
+
# mask = np.resize(mask,(self.args.out_size,self.args.out_size,128))
|
58 |
+
|
59 |
+
# # img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
60 |
+
# # mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
61 |
+
|
62 |
+
img = torch.tensor(img).unsqueeze(0)
|
63 |
+
mask = torch.tensor(mask).unsqueeze(0)
|
64 |
+
|
65 |
+
if self.prompt == 'click':
|
66 |
+
point_label, pt = random_click(np.array(mask), point_label)
|
67 |
+
# if self.transform:
|
68 |
+
# state = torch.get_rng_state()
|
69 |
+
# img = self.transform(img)
|
70 |
+
# torch.set_rng_state(state)
|
71 |
+
|
72 |
+
# if self.transform_msk:
|
73 |
+
# mask = self.transform_msk(mask)
|
74 |
+
|
75 |
+
# # if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
76 |
+
# # mask = 1 - mask
|
77 |
+
name = img_name
|
78 |
+
image_meta_dict = {'filename_or_obj':name}
|
79 |
+
return {
|
80 |
+
'image':img,
|
81 |
+
'label': mask,
|
82 |
+
'p_label':point_label,
|
83 |
+
'pt':pt,
|
84 |
+
'image_meta_dict':image_meta_dict,
|
85 |
+
}
|
86 |
+
|
dataset/brat.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from PIL import Image
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
|
11 |
+
from utils import generate_click_prompt, random_box, random_click
|
12 |
+
|
13 |
+
|
14 |
+
class Brat(Dataset):
|
15 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
16 |
+
|
17 |
+
self.args = args
|
18 |
+
self.data_path = os.path.join(data_path,'Data')
|
19 |
+
self.name_list = os.listdir(self.data_path)
|
20 |
+
self.mode = mode
|
21 |
+
self.prompt = prompt
|
22 |
+
self.img_size = args.image_size
|
23 |
+
|
24 |
+
self.transform = transform
|
25 |
+
self.transform_msk = transform_msk
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.name_list)
|
29 |
+
|
30 |
+
def load_all_levels(self,path):
|
31 |
+
import nibabel as nib
|
32 |
+
data_dir = os.path.join(self.data_path)
|
33 |
+
levels = ['t1','flair','t2','t1ce']
|
34 |
+
raw_image = [nib.load(os.path.join
|
35 |
+
(data_dir,path,path+'_'+level+'.nii.gz')).get_fdata() for level in levels]
|
36 |
+
raw_seg = nib.load(os.path.join(data_dir,path,path+'_seg.nii.gz')).get_fdata()
|
37 |
+
|
38 |
+
return raw_image[0], raw_seg
|
39 |
+
|
40 |
+
def __getitem__(self, index):
|
41 |
+
# if self.mode == 'Training':
|
42 |
+
# point_label = random.randint(0, 1)
|
43 |
+
# inout = random.randint(0, 1)
|
44 |
+
# else:
|
45 |
+
# inout = 1
|
46 |
+
# point_label = 1
|
47 |
+
point_label = 1
|
48 |
+
label = 4 # the class to be segmented
|
49 |
+
|
50 |
+
"""Get the images"""
|
51 |
+
name = self.name_list[index]
|
52 |
+
img,mask = self.load_all_levels(name)
|
53 |
+
|
54 |
+
mask[mask!=label] = 0
|
55 |
+
mask[mask==label] = 1
|
56 |
+
# if self.mode == 'Training':
|
57 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
58 |
+
# else:
|
59 |
+
# label = int(self.label_list[index])
|
60 |
+
|
61 |
+
|
62 |
+
img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
63 |
+
mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
64 |
+
|
65 |
+
img = torch.tensor(img).unsqueeze(0)
|
66 |
+
mask = torch.tensor(mask).unsqueeze(0)
|
67 |
+
mask = torch.clamp(mask,min=0,max=1).int()
|
68 |
+
|
69 |
+
if self.prompt == 'click':
|
70 |
+
point_label, pt = random_click(np.array(mask), point_label)
|
71 |
+
# if self.transform:
|
72 |
+
# state = torch.get_rng_state()
|
73 |
+
# img = self.transform(img)
|
74 |
+
# torch.set_rng_state(state)
|
75 |
+
|
76 |
+
# if self.transform_msk:
|
77 |
+
# mask = self.transform_msk(mask)
|
78 |
+
|
79 |
+
# # if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
80 |
+
# # mask = 1 - mask
|
81 |
+
name = name.split('/')[-1].split(".jpg")[0]
|
82 |
+
image_meta_dict = {'filename_or_obj':name}
|
83 |
+
return {
|
84 |
+
'image':img,
|
85 |
+
'label': mask,
|
86 |
+
'p_label':point_label,
|
87 |
+
'pt':pt,
|
88 |
+
'image_meta_dict':image_meta_dict,
|
89 |
+
}
|
90 |
+
|
dataset/ddti.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
from utils import random_box, random_click
|
11 |
+
|
12 |
+
|
13 |
+
class DDTI(Dataset):
|
14 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
15 |
+
|
16 |
+
self.name_list = os.listdir(os.path.join(data_path,mode,'images'))
|
17 |
+
self.data_path = data_path
|
18 |
+
self.mode = mode
|
19 |
+
self.prompt = prompt
|
20 |
+
self.img_size = args.image_size
|
21 |
+
|
22 |
+
self.transform = transform
|
23 |
+
self.transform_msk = transform_msk
|
24 |
+
|
25 |
+
def __len__(self):
|
26 |
+
return len(self.name_list)
|
27 |
+
|
28 |
+
def find_connected_components(self,mask):
|
29 |
+
mask = np.clip(mask,0,1)
|
30 |
+
num_labels, labels = cv2.connectedComponents(mask.astype(np.uint8))
|
31 |
+
point = []
|
32 |
+
point_labels = []
|
33 |
+
|
34 |
+
for label in range(1, num_labels):
|
35 |
+
component_mask = np.where(labels == label, 1, 0)
|
36 |
+
area = np.sum(component_mask)
|
37 |
+
|
38 |
+
if area > 400:
|
39 |
+
point_label, random_point = random_click(component_mask)
|
40 |
+
point.append(random_point)
|
41 |
+
point_labels.append(point_label)
|
42 |
+
# print(f"Random point in component {label}: {random_point}, label: {point_labels}")
|
43 |
+
if(len(point)==1):
|
44 |
+
point.append(point[0])
|
45 |
+
point_labels.append(point_labels[0])
|
46 |
+
if(len(point)>2):
|
47 |
+
point = point[:2]
|
48 |
+
point_labels = point_labels[:2]
|
49 |
+
point = np.array(point)
|
50 |
+
point_labels = np.array(point_labels)
|
51 |
+
return point_labels,point
|
52 |
+
|
53 |
+
def __getitem__(self, index):
|
54 |
+
point_label = 1
|
55 |
+
|
56 |
+
"""Get the images"""
|
57 |
+
name = self.name_list[index]
|
58 |
+
img_path = os.path.join(self.data_path, self.mode, 'images', name)
|
59 |
+
msk_path = os.path.join(self.data_path, self.mode, 'masks', name)
|
60 |
+
|
61 |
+
img = Image.open(img_path).convert('RGB')
|
62 |
+
mask = Image.open(msk_path).convert('L')
|
63 |
+
|
64 |
+
# if self.mode == 'Training':
|
65 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
66 |
+
# else:
|
67 |
+
# label = int(self.label_list[index])
|
68 |
+
|
69 |
+
newsize = (self.img_size, self.img_size)
|
70 |
+
mask = mask.resize(newsize)
|
71 |
+
|
72 |
+
if self.prompt == 'click':
|
73 |
+
# two prompt
|
74 |
+
point_label, pt = self.find_connected_components(np.array(mask))
|
75 |
+
# one prompt
|
76 |
+
# point_label, pt = random_click(np.array(mask) / 255, point_label)
|
77 |
+
|
78 |
+
if self.transform:
|
79 |
+
state = torch.get_rng_state()
|
80 |
+
img = self.transform(img)
|
81 |
+
torch.set_rng_state(state)
|
82 |
+
|
83 |
+
|
84 |
+
if self.transform_msk:
|
85 |
+
mask = self.transform_msk(mask)
|
86 |
+
|
87 |
+
# if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
88 |
+
# mask = 1 - mask
|
89 |
+
mask = torch.clamp(mask,min=0,max=1).int()
|
90 |
+
|
91 |
+
name = name.split('/')[-1].split(".jpg")[0]
|
92 |
+
image_meta_dict = {'filename_or_obj':name}
|
93 |
+
return {
|
94 |
+
'image':img,
|
95 |
+
'label': mask,
|
96 |
+
'p_label':point_label,
|
97 |
+
'pt':pt,
|
98 |
+
'image_meta_dict':image_meta_dict,
|
99 |
+
}
|
dataset/isic.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
|
9 |
+
from utils import random_box, random_click
|
10 |
+
|
11 |
+
|
12 |
+
class ISIC2016(Dataset):
|
13 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
14 |
+
|
15 |
+
df = pd.read_csv(os.path.join(data_path, 'ISBI2016_ISIC_Part1_' + mode + '_GroundTruth.csv'), encoding='gbk')
|
16 |
+
self.name_list = df.iloc[:,1].tolist()
|
17 |
+
self.label_list = df.iloc[:,2].tolist()
|
18 |
+
self.data_path = data_path
|
19 |
+
self.mode = mode
|
20 |
+
self.prompt = prompt
|
21 |
+
self.img_size = args.image_size
|
22 |
+
|
23 |
+
self.transform = transform
|
24 |
+
self.transform_msk = transform_msk
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return len(self.name_list)
|
28 |
+
|
29 |
+
def __getitem__(self, index):
|
30 |
+
# if self.mode == 'Training':
|
31 |
+
# point_label = random.randint(0, 1)
|
32 |
+
# inout = random.randint(0, 1)
|
33 |
+
# else:
|
34 |
+
# inout = 1
|
35 |
+
# point_label = 1
|
36 |
+
point_label = 1
|
37 |
+
|
38 |
+
"""Get the images"""
|
39 |
+
name = self.name_list[index]
|
40 |
+
img_path = os.path.join(self.data_path, name)
|
41 |
+
|
42 |
+
mask_name = self.label_list[index]
|
43 |
+
msk_path = os.path.join(self.data_path, mask_name)
|
44 |
+
|
45 |
+
img = Image.open(img_path).convert('RGB')
|
46 |
+
mask = Image.open(msk_path).convert('L')
|
47 |
+
|
48 |
+
# if self.mode == 'Training':
|
49 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
50 |
+
# else:
|
51 |
+
# label = int(self.label_list[index])
|
52 |
+
|
53 |
+
newsize = (self.img_size, self.img_size)
|
54 |
+
mask = mask.resize(newsize)
|
55 |
+
|
56 |
+
if self.prompt == 'click':
|
57 |
+
point_label, pt = random_click(np.array(mask) / 255, point_label)
|
58 |
+
|
59 |
+
if self.transform:
|
60 |
+
state = torch.get_rng_state()
|
61 |
+
img = self.transform(img)
|
62 |
+
torch.set_rng_state(state)
|
63 |
+
|
64 |
+
|
65 |
+
if self.transform_msk:
|
66 |
+
mask = self.transform_msk(mask).int()
|
67 |
+
|
68 |
+
# if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
69 |
+
# mask = 1 - mask
|
70 |
+
name = name.split('/')[-1].split(".jpg")[0]
|
71 |
+
image_meta_dict = {'filename_or_obj':name}
|
72 |
+
return {
|
73 |
+
'image':img,
|
74 |
+
'label': mask,
|
75 |
+
'p_label':point_label,
|
76 |
+
'pt':pt,
|
77 |
+
'image_meta_dict':image_meta_dict,
|
78 |
+
}
|
dataset/kits.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import nibabel as nib
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
from utils import generate_click_prompt, random_box, random_click
|
13 |
+
|
14 |
+
|
15 |
+
class KITS(Dataset):
|
16 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
17 |
+
|
18 |
+
|
19 |
+
self.args = args
|
20 |
+
self.data_path = os.path.join(data_path,'kits21','data')
|
21 |
+
self.name_list = os.listdir(self.data_path)
|
22 |
+
self.mode = mode
|
23 |
+
self.prompt = prompt
|
24 |
+
self.img_size = args.image_size
|
25 |
+
|
26 |
+
self.transform = transform
|
27 |
+
self.transform_msk = transform_msk
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self.name_list)
|
31 |
+
|
32 |
+
|
33 |
+
def __getitem__(self, index):
|
34 |
+
# if self.mode == 'Training':
|
35 |
+
# point_label = random.randint(0, 1)
|
36 |
+
# inout = random.randint(0, 1)
|
37 |
+
# else:
|
38 |
+
# inout = 1
|
39 |
+
# point_label = 1
|
40 |
+
point_label = 1
|
41 |
+
|
42 |
+
|
43 |
+
"""Get the images"""
|
44 |
+
name = self.name_list[index]
|
45 |
+
img = nib.load(os.path.join(self.data_path,name,'imaging.nii.gz')).get_fdata()
|
46 |
+
mask = nib.load(os.path.join(self.data_path,name,'aggregated_AND_seg.nii.gz')).get_fdata()
|
47 |
+
|
48 |
+
mask = np.clip(mask,0,1)
|
49 |
+
# if self.mode == 'Training':
|
50 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
51 |
+
# else:
|
52 |
+
# label = int(self.label_list[index])
|
53 |
+
img = np.transpose(img,(1,2,0))
|
54 |
+
mask = np.transpose(mask,(1,2,0))
|
55 |
+
|
56 |
+
# img = np.resize(mask,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
57 |
+
# mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
58 |
+
|
59 |
+
img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
60 |
+
mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
61 |
+
|
62 |
+
img = torch.tensor(img).unsqueeze(0)
|
63 |
+
mask = torch.tensor(mask).unsqueeze(0)
|
64 |
+
mask = torch.clamp(mask,min=0,max=1).int()
|
65 |
+
|
66 |
+
if self.prompt == 'click':
|
67 |
+
point_label, pt = random_click(np.array(mask), point_label)
|
68 |
+
# if self.transform:
|
69 |
+
# state = torch.get_rng_state()
|
70 |
+
# img = self.transform(img)
|
71 |
+
# torch.set_rng_state(state)
|
72 |
+
|
73 |
+
# if self.transform_msk:
|
74 |
+
# mask = self.transform_msk(mask)
|
75 |
+
|
76 |
+
# # if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
77 |
+
# # mask = 1 - mask
|
78 |
+
name = name.split('/')[-1].split(".jpg")[0]
|
79 |
+
image_meta_dict = {'filename_or_obj':name}
|
80 |
+
return {
|
81 |
+
'image':img,
|
82 |
+
'label': mask,
|
83 |
+
'p_label':point_label,
|
84 |
+
'pt':pt,
|
85 |
+
'image_meta_dict':image_meta_dict,
|
86 |
+
}
|
87 |
+
|
dataset/lidc.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from PIL import Image
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
|
11 |
+
from utils import random_box, random_click
|
12 |
+
|
13 |
+
|
14 |
+
class LIDC(Dataset):
|
15 |
+
names = []
|
16 |
+
images = []
|
17 |
+
labels = []
|
18 |
+
series_uid = []
|
19 |
+
|
20 |
+
def __init__(self, data_path, transform=None, transform_msk = None, prompt = 'click'):
|
21 |
+
self.prompt = prompt
|
22 |
+
self.transform = transform
|
23 |
+
self.transform_msk = transform_msk
|
24 |
+
|
25 |
+
max_bytes = 2**31 - 1
|
26 |
+
data = {}
|
27 |
+
for file in os.listdir(data_path):
|
28 |
+
filename = os.fsdecode(file)
|
29 |
+
if '.pickle' in filename:
|
30 |
+
file_path = data_path + filename
|
31 |
+
bytes_in = bytearray(0)
|
32 |
+
input_size = os.path.getsize(file_path)
|
33 |
+
with open(file_path, 'rb') as f_in:
|
34 |
+
for _ in range(0, input_size, max_bytes):
|
35 |
+
bytes_in += f_in.read(max_bytes)
|
36 |
+
new_data = pickle.loads(bytes_in)
|
37 |
+
data.update(new_data)
|
38 |
+
|
39 |
+
|
40 |
+
for key, value in data.items():
|
41 |
+
self.names.append(key)
|
42 |
+
self.images.append(value['image'].astype(float))
|
43 |
+
self.labels.append(value['masks'])
|
44 |
+
self.series_uid.append(value['series_uid'])
|
45 |
+
|
46 |
+
assert (len(self.images) == len(self.labels) == len(self.series_uid))
|
47 |
+
|
48 |
+
for img in self.images:
|
49 |
+
assert np.max(img) <= 1 and np.min(img) >= 0
|
50 |
+
for label in self.labels:
|
51 |
+
assert np.max(label) <= 1 and np.min(label) >= 0
|
52 |
+
|
53 |
+
del new_data
|
54 |
+
del data
|
55 |
+
|
56 |
+
def __len__(self):
|
57 |
+
return len(self.images)
|
58 |
+
|
59 |
+
def __getitem__(self, index):
|
60 |
+
|
61 |
+
point_label = 1
|
62 |
+
|
63 |
+
"""Get the images"""
|
64 |
+
img = np.expand_dims(self.images[index], axis=0)
|
65 |
+
name = self.names[index]
|
66 |
+
multi_rater = self.labels[index]
|
67 |
+
|
68 |
+
# first click is the target most agreement among raters, otherwise, background agreement
|
69 |
+
if self.prompt == 'click':
|
70 |
+
point_label, pt = random_click(np.array(np.mean(np.stack(multi_rater), axis=0)) / 255, point_label)
|
71 |
+
|
72 |
+
# Convert image (ensure three channels) and multi-rater labels to torch tensors
|
73 |
+
img = torch.from_numpy(img).type(torch.float32)
|
74 |
+
img = img.repeat(3, 1, 1)
|
75 |
+
multi_rater = [torch.from_numpy(single_rater).type(torch.float32) for single_rater in multi_rater]
|
76 |
+
|
77 |
+
multi_rater = torch.stack(multi_rater, dim=0)
|
78 |
+
multi_rater = multi_rater.unsqueeze(1)
|
79 |
+
|
80 |
+
if self.prompt == 'box':
|
81 |
+
x_min, x_max, y_min, y_max = random_box(multi_rater)
|
82 |
+
box = [x_min, x_max, y_min, y_max]
|
83 |
+
|
84 |
+
mask = multi_rater.mean(dim=0) # average
|
85 |
+
|
86 |
+
image_meta_dict = {'filename_or_obj':name}
|
87 |
+
return {
|
88 |
+
'image':img,
|
89 |
+
'multi_rater': multi_rater,
|
90 |
+
'label': mask,
|
91 |
+
'p_label':point_label,
|
92 |
+
'pt':pt,
|
93 |
+
'box': box,
|
94 |
+
'image_meta_dict':image_meta_dict,
|
95 |
+
}
|
96 |
+
|
dataset/lnq.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
import nibabel as nib
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import SimpleITK as sitk
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from PIL import Image
|
12 |
+
from torch.utils.data import Dataset
|
13 |
+
|
14 |
+
from utils import generate_click_prompt, random_box, random_click
|
15 |
+
|
16 |
+
|
17 |
+
class LNQ(Dataset):
|
18 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
19 |
+
|
20 |
+
|
21 |
+
self.args = args
|
22 |
+
self.data_path = os.path.join(data_path,'train')
|
23 |
+
|
24 |
+
files = os.listdir(self.data_path)
|
25 |
+
|
26 |
+
self.name_list = [file for file in files if file.endswith('.png')]
|
27 |
+
self.mode = mode
|
28 |
+
self.prompt = prompt
|
29 |
+
self.img_size = args.image_size
|
30 |
+
|
31 |
+
self.transform = transform
|
32 |
+
self.transform_msk = transform_msk
|
33 |
+
|
34 |
+
def __len__(self):
|
35 |
+
return len(self.name_list)
|
36 |
+
|
37 |
+
|
38 |
+
def __getitem__(self, index):
|
39 |
+
point_label = 1
|
40 |
+
label = 1
|
41 |
+
|
42 |
+
"""Get the images"""
|
43 |
+
name = self.name_list[index].split('.')[0]
|
44 |
+
img_name = name + '-ct.nrrd'
|
45 |
+
mask_name = name + '-seg.nrrd'
|
46 |
+
|
47 |
+
img = sitk.GetArrayFromImage(sitk.ReadImage(os.path.join(self.data_path,img_name)))
|
48 |
+
mask = sitk.GetArrayFromImage(sitk.ReadImage(os.path.join(self.data_path,mask_name)))
|
49 |
+
|
50 |
+
mask[mask!=label] = 0
|
51 |
+
mask[mask==label] = 1
|
52 |
+
# if self.mode == 'Training':
|
53 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
54 |
+
# else:
|
55 |
+
# label = int(self.label_list[index])
|
56 |
+
img = np.transpose(img,(1,2,0))
|
57 |
+
mask = np.transpose(mask,(1,2,0))
|
58 |
+
|
59 |
+
# img = np.resize(mask,(self.args.image_size, self.args.image_size,128))
|
60 |
+
# mask = np.resize(mask,(self.args.out_size,self.args.out_size,128))
|
61 |
+
|
62 |
+
# # img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
63 |
+
# # mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
64 |
+
|
65 |
+
img = torch.tensor(img).unsqueeze(0).int()
|
66 |
+
mask = torch.tensor(mask).unsqueeze(0).int()
|
67 |
+
|
68 |
+
if self.prompt == 'click':
|
69 |
+
point_label, pt = random_click(np.array(mask), point_label)
|
70 |
+
|
71 |
+
name = img_name
|
72 |
+
image_meta_dict = {'filename_or_obj':name}
|
73 |
+
return {
|
74 |
+
'image':img,
|
75 |
+
'label': mask,
|
76 |
+
'p_label':point_label,
|
77 |
+
'pt':pt,
|
78 |
+
'image_meta_dict':image_meta_dict,
|
79 |
+
}
|
80 |
+
|
dataset/pendal.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import nibabel as nib
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
from utils import generate_click_prompt, random_box, random_click
|
13 |
+
|
14 |
+
|
15 |
+
class Pendal(Dataset):
|
16 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
17 |
+
|
18 |
+
self.args = args
|
19 |
+
self.data_path = data_path
|
20 |
+
self.name_list = os.listdir(os.path.join(self.data_path,'Images'))
|
21 |
+
self.mode = mode
|
22 |
+
self.prompt = prompt
|
23 |
+
self.img_size = args.image_size
|
24 |
+
|
25 |
+
self.transform = transform
|
26 |
+
self.transform_msk = transform_msk
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.name_list)
|
30 |
+
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
# if self.mode == 'Training':
|
34 |
+
# point_label = random.randint(0, 1)
|
35 |
+
# inout = random.randint(0, 1)
|
36 |
+
# else:
|
37 |
+
# inout = 1
|
38 |
+
# point_label = 1
|
39 |
+
point_label = 1
|
40 |
+
|
41 |
+
"""Get the images"""
|
42 |
+
name = self.name_list[index]
|
43 |
+
img = Image.open(os.path.join(self.data_path, 'Images',name)).convert('RGB')
|
44 |
+
mask = Image.open(os.path.join(self.data_path, 'Segmentation1',name)).convert('L')
|
45 |
+
|
46 |
+
mask = np.array(mask)
|
47 |
+
mask[mask==mask.min()]=0
|
48 |
+
mask[mask>0] = 255
|
49 |
+
|
50 |
+
if self.prompt == 'click':
|
51 |
+
point_label, pt = random_click(np.array(mask) / 255, point_label)
|
52 |
+
|
53 |
+
if self.transform:
|
54 |
+
state = torch.get_rng_state()
|
55 |
+
img = self.transform(img)
|
56 |
+
torch.set_rng_state(state)
|
57 |
+
|
58 |
+
|
59 |
+
if self.transform_msk:
|
60 |
+
mask = Image.fromarray(mask)
|
61 |
+
mask = self.transform_msk(mask).int()
|
62 |
+
|
63 |
+
image_meta_dict = {'filename_or_obj':name}
|
64 |
+
return {
|
65 |
+
'image':img,
|
66 |
+
'label': mask,
|
67 |
+
'p_label':point_label,
|
68 |
+
'pt':pt,
|
69 |
+
'image_meta_dict':image_meta_dict,
|
70 |
+
}
|
71 |
+
|
dataset/refuge.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
from utils import random_box, random_click
|
11 |
+
|
12 |
+
|
13 |
+
class REFUGE(Dataset):
|
14 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'none', plane = False):
|
15 |
+
self.data_path = data_path
|
16 |
+
self.subfolders = [f.path for f in os.scandir(os.path.join(data_path, mode + '-400')) if f.is_dir()]
|
17 |
+
self.mode = mode
|
18 |
+
self.prompt = prompt
|
19 |
+
self.img_size = args.image_size
|
20 |
+
self.mask_size = args.out_size
|
21 |
+
|
22 |
+
self.transform = transform
|
23 |
+
self.transform_msk = transform_msk
|
24 |
+
|
25 |
+
def __len__(self):
|
26 |
+
return len(self.subfolders)
|
27 |
+
|
28 |
+
def __getitem__(self, index):
|
29 |
+
point_label = 1
|
30 |
+
|
31 |
+
"""Get the images"""
|
32 |
+
subfolder = self.subfolders[index]
|
33 |
+
name = subfolder.split('/')[-1]
|
34 |
+
|
35 |
+
# raw image and raters path
|
36 |
+
img_path = os.path.join(subfolder, name + '.jpg')
|
37 |
+
multi_rater_cup_path = [os.path.join(subfolder, name + '_seg_cup_' + str(i) + '.png') for i in range(1, 8)]
|
38 |
+
multi_rater_disc_path = [os.path.join(subfolder, name + '_seg_disc_' + str(i) + '.png') for i in range(1, 8)]
|
39 |
+
|
40 |
+
# raw image and raters images
|
41 |
+
img = Image.open(img_path).convert('RGB')
|
42 |
+
multi_rater_cup = [Image.open(path).convert('L') for path in multi_rater_cup_path]
|
43 |
+
multi_rater_disc = [Image.open(path).convert('L') for path in multi_rater_disc_path]
|
44 |
+
|
45 |
+
# resize raters images for generating initial point click
|
46 |
+
newsize = (self.img_size, self.img_size)
|
47 |
+
multi_rater_cup_np = [np.array(single_rater.resize(newsize)) for single_rater in multi_rater_cup]
|
48 |
+
multi_rater_disc_np = [np.array(single_rater.resize(newsize)) for single_rater in multi_rater_disc]
|
49 |
+
|
50 |
+
# first click is the target agreement among most raters
|
51 |
+
if self.prompt == 'click':
|
52 |
+
point_label, pt = random_click(np.array(np.mean(np.stack(multi_rater_cup_np), axis=0)) / 255, point_label)
|
53 |
+
point_label, pt_disc = random_click(np.array(np.mean(np.stack(multi_rater_disc_np), axis=0)) / 255, point_label)
|
54 |
+
else:
|
55 |
+
# you may want to get rid of click prompts
|
56 |
+
pt = np.array([0, 0], dtype=np.int32)
|
57 |
+
|
58 |
+
if self.transform:
|
59 |
+
state = torch.get_rng_state()
|
60 |
+
img = self.transform(img)
|
61 |
+
multi_rater_cup = [torch.as_tensor((self.transform(single_rater) >0.5).float(), dtype=torch.float32) for single_rater in multi_rater_cup]
|
62 |
+
multi_rater_cup = torch.stack(multi_rater_cup, dim=0)
|
63 |
+
# transform to mask size (out_size) for mask define
|
64 |
+
mask_cup = F.interpolate(multi_rater_cup, size=(self.mask_size, self.mask_size), mode='bilinear', align_corners=False).mean(dim=0)
|
65 |
+
|
66 |
+
multi_rater_disc = [torch.as_tensor((self.transform(single_rater) >0.5).float(), dtype=torch.float32) for single_rater in multi_rater_disc]
|
67 |
+
multi_rater_disc = torch.stack(multi_rater_disc, dim=0)
|
68 |
+
mask_disc = F.interpolate(multi_rater_disc, size=(self.mask_size, self.mask_size), mode='bilinear', align_corners=False).mean(dim=0)
|
69 |
+
torch.set_rng_state(state)
|
70 |
+
|
71 |
+
mask = torch.concat([mask_cup, mask_disc], dim=0)
|
72 |
+
|
73 |
+
if self.prompt == 'box':
|
74 |
+
x_min_cup, x_max_cup, y_min_cup, y_max_cup = random_box(multi_rater_cup)
|
75 |
+
box_cup = [x_min_cup, x_max_cup, y_min_cup, y_max_cup]
|
76 |
+
x_min_disc, x_max_disc, y_min_disc, y_max_disc = random_box(multi_rater_disc)
|
77 |
+
box_disc = [x_min_disc, x_max_disc, y_min_disc, y_max_disc]
|
78 |
+
else:
|
79 |
+
# you may want to get rid of box prompts
|
80 |
+
box_cup = [0, 0, 0, 0]
|
81 |
+
box_disc = [0, 0, 0, 0]
|
82 |
+
|
83 |
+
image_meta_dict = {'filename_or_obj':name}
|
84 |
+
return {
|
85 |
+
'image':img,
|
86 |
+
'label': mask,
|
87 |
+
'p_label':point_label,
|
88 |
+
'pt':pt,
|
89 |
+
'box': box_cup,
|
90 |
+
'image_meta_dict':image_meta_dict,
|
91 |
+
}
|
dataset/segrap.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import nibabel as nib
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
from utils import generate_click_prompt, random_box, random_click
|
13 |
+
|
14 |
+
|
15 |
+
class SegRap(Dataset):
|
16 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
17 |
+
|
18 |
+
self.args = args
|
19 |
+
self.data_path = data_path
|
20 |
+
self.name_list = os.listdir(os.path.join(self.data_path,'SegRap2023_Training_Set_120cases_OneHot_Labels','Task001'))
|
21 |
+
self.mode = mode
|
22 |
+
self.prompt = prompt
|
23 |
+
self.img_size = args.image_size
|
24 |
+
|
25 |
+
self.transform = transform
|
26 |
+
self.transform_msk = transform_msk
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.name_list)
|
30 |
+
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
# if self.mode == 'Training':
|
34 |
+
# point_label = random.randint(0, 1)
|
35 |
+
# inout = random.randint(0, 1)
|
36 |
+
# else:
|
37 |
+
# inout = 1
|
38 |
+
# point_label = 1
|
39 |
+
point_label = 1
|
40 |
+
label = 1 # 待分割的类别
|
41 |
+
|
42 |
+
"""Get the images"""
|
43 |
+
name = self.name_list[index].split('.')[0]
|
44 |
+
img = nib.load(os.path.join(self.data_path,'SegRap2023_Training_Set_120cases',name,'image.nii.gz')).get_fdata()
|
45 |
+
mask = nib.load(os.path.join(self.data_path,'SegRap2023_Training_Set_120cases_OneHot_Labels','Task001',name+'.nii.gz')).get_fdata()
|
46 |
+
|
47 |
+
img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
48 |
+
mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
49 |
+
mask[mask!=label] = 0
|
50 |
+
mask[mask==label] = 1
|
51 |
+
|
52 |
+
img = torch.tensor(img).unsqueeze(0)
|
53 |
+
mask = torch.tensor(mask).unsqueeze(0).int()
|
54 |
+
if self.prompt == 'click':
|
55 |
+
point_label, pt = random_click(np.array(mask), point_label)
|
56 |
+
|
57 |
+
image_meta_dict = {'filename_or_obj':name}
|
58 |
+
return {
|
59 |
+
'image':img,
|
60 |
+
'label': mask,
|
61 |
+
'p_label':point_label,
|
62 |
+
'pt':pt,
|
63 |
+
'image_meta_dict':image_meta_dict,
|
64 |
+
}
|
65 |
+
|
dataset/stare.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
|
9 |
+
from utils import random_box, random_click
|
10 |
+
|
11 |
+
|
12 |
+
class STARE(Dataset):
|
13 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
14 |
+
|
15 |
+
self.data_path = data_path
|
16 |
+
self.name_list = os.listdir(os.path.join(data_path,'masks'))
|
17 |
+
self.prompt = prompt
|
18 |
+
self.img_size = args.image_size
|
19 |
+
|
20 |
+
self.transform = transform
|
21 |
+
self.transform_msk = transform_msk
|
22 |
+
|
23 |
+
def __len__(self):
|
24 |
+
return len(self.name_list)
|
25 |
+
|
26 |
+
def __getitem__(self, index):
|
27 |
+
# if self.mode == 'Training':
|
28 |
+
# point_label = random.randint(0, 1)
|
29 |
+
# inout = random.randint(0, 1)
|
30 |
+
# else:
|
31 |
+
# inout = 1
|
32 |
+
# point_label = 1
|
33 |
+
point_label = 1
|
34 |
+
|
35 |
+
"""Get the images"""
|
36 |
+
name = self.name_list[index].split('.')[0]
|
37 |
+
|
38 |
+
img_path = os.path.join(self.data_path, 'images',name+'.ppm')
|
39 |
+
|
40 |
+
msk_path = os.path.join(self.data_path, 'masks', name+'.ah.ppm')
|
41 |
+
|
42 |
+
img = Image.open(img_path).convert('RGB')
|
43 |
+
mask = Image.open(msk_path).convert('L')
|
44 |
+
|
45 |
+
# if self.mode == 'Training':
|
46 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
47 |
+
# else:
|
48 |
+
# label = int(self.label_list[index])
|
49 |
+
|
50 |
+
newsize = (self.img_size, self.img_size)
|
51 |
+
mask = mask.resize(newsize)
|
52 |
+
|
53 |
+
if self.prompt == 'click':
|
54 |
+
point_label, pt = random_click(np.array(mask) / 255, point_label)
|
55 |
+
|
56 |
+
if self.transform:
|
57 |
+
state = torch.get_rng_state()
|
58 |
+
img = self.transform(img)
|
59 |
+
torch.set_rng_state(state)
|
60 |
+
|
61 |
+
|
62 |
+
if self.transform_msk:
|
63 |
+
mask = self.transform_msk(mask).int()
|
64 |
+
|
65 |
+
# if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
66 |
+
# mask = 1 - mask
|
67 |
+
name = name.split('/')[-1].split(".jpg")[0]
|
68 |
+
image_meta_dict = {'filename_or_obj':name}
|
69 |
+
return {
|
70 |
+
'image':img,
|
71 |
+
'label': mask,
|
72 |
+
'p_label':point_label,
|
73 |
+
'pt':pt,
|
74 |
+
'image_meta_dict':image_meta_dict,
|
75 |
+
}
|
dataset/toothfairy.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import nibabel as nib
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import Dataset
|
11 |
+
|
12 |
+
from utils import generate_click_prompt, random_box, random_click
|
13 |
+
|
14 |
+
|
15 |
+
class ToothFairy(Dataset):
|
16 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
17 |
+
|
18 |
+
|
19 |
+
self.args = args
|
20 |
+
self.data_path = os.path.join(data_path,'Dataset')
|
21 |
+
self.name_list = os.listdir(self.data_path)
|
22 |
+
self.mode = mode
|
23 |
+
self.prompt = prompt
|
24 |
+
self.img_size = args.image_size
|
25 |
+
|
26 |
+
self.transform = transform
|
27 |
+
self.transform_msk = transform_msk
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self.name_list)
|
31 |
+
|
32 |
+
|
33 |
+
def __getitem__(self, index):
|
34 |
+
point_label = 1
|
35 |
+
|
36 |
+
|
37 |
+
"""Get the images"""
|
38 |
+
name = self.name_list[index]
|
39 |
+
img = np.load(os.path.join(self.data_path,name,'data.npy'))
|
40 |
+
mask = np.load(os.path.join(self.data_path,name,'gt_sparse.npy'))
|
41 |
+
|
42 |
+
# if self.mode == 'Training':
|
43 |
+
# label = 0 if self.label_list[index] == 'benign' else 1
|
44 |
+
# else:
|
45 |
+
# label = int(self.label_list[index])
|
46 |
+
img = np.transpose(img,(1,2,0))
|
47 |
+
mask = np.transpose(mask,(1,2,0))
|
48 |
+
|
49 |
+
# img = np.resize(mask,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
50 |
+
# mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
51 |
+
|
52 |
+
img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
|
53 |
+
mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
|
54 |
+
|
55 |
+
img = torch.tensor(img).unsqueeze(0)
|
56 |
+
mask = torch.tensor(mask).unsqueeze(0)
|
57 |
+
mask = torch.clamp(mask,min=0,max=1).int()
|
58 |
+
|
59 |
+
if self.prompt == 'click':
|
60 |
+
point_label, pt = random_click(np.array(mask), point_label)
|
61 |
+
# if self.transform:
|
62 |
+
# state = torch.get_rng_state()
|
63 |
+
# img = self.transform(img)
|
64 |
+
# torch.set_rng_state(state)
|
65 |
+
|
66 |
+
# if self.transform_msk:
|
67 |
+
# mask = self.transform_msk(mask)
|
68 |
+
|
69 |
+
# # if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
70 |
+
# # mask = 1 - mask
|
71 |
+
name = name.split('/')[-1].split(".jpg")[0]
|
72 |
+
image_meta_dict = {'filename_or_obj':name}
|
73 |
+
return {
|
74 |
+
'image':img,
|
75 |
+
'label': mask,
|
76 |
+
'p_label':point_label,
|
77 |
+
'pt':pt,
|
78 |
+
'image_meta_dict':image_meta_dict,
|
79 |
+
}
|
80 |
+
|
dataset/wbc.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
from utils import random_box, random_click
|
11 |
+
|
12 |
+
|
13 |
+
class WBC(Dataset):
|
14 |
+
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
|
15 |
+
|
16 |
+
self.data_path = os.path.join(data_path,'Dataset1')
|
17 |
+
self.name_list = glob.glob(self.data_path + "/*.bmp")
|
18 |
+
self.mode = mode
|
19 |
+
self.prompt = prompt
|
20 |
+
self.img_size = args.image_size
|
21 |
+
|
22 |
+
self.transform = transform
|
23 |
+
self.transform_msk = transform_msk
|
24 |
+
|
25 |
+
def __len__(self):
|
26 |
+
return len(self.name_list)
|
27 |
+
|
28 |
+
def __getitem__(self, index):
|
29 |
+
point_label = 1 # available: 1 2
|
30 |
+
|
31 |
+
"""Get the images"""
|
32 |
+
name = os.path.basename(self.name_list[index]).split('.')[0]
|
33 |
+
|
34 |
+
img_path = os.path.join(self.data_path, name + '.bmp')
|
35 |
+
msk_path = os.path.join(self.data_path, name + '.png')
|
36 |
+
|
37 |
+
img = Image.open(img_path).convert('RGB')
|
38 |
+
mask = Image.open(msk_path).convert('L')
|
39 |
+
|
40 |
+
mask = np.array(mask) // 127
|
41 |
+
mask[mask!=point_label] = 0
|
42 |
+
mask[mask==point_label] = 255
|
43 |
+
|
44 |
+
if self.prompt == 'click':
|
45 |
+
point_label, pt = random_click(np.array(mask) / 255, point_label)
|
46 |
+
|
47 |
+
if self.transform:
|
48 |
+
state = torch.get_rng_state()
|
49 |
+
img = self.transform(img)
|
50 |
+
torch.set_rng_state(state)
|
51 |
+
|
52 |
+
if self.transform_msk:
|
53 |
+
mask = Image.fromarray(mask)
|
54 |
+
mask = self.transform_msk(mask).int()
|
55 |
+
|
56 |
+
# if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0):
|
57 |
+
# mask = 1 - mask
|
58 |
+
image_meta_dict = {'filename_or_obj':name}
|
59 |
+
return {
|
60 |
+
'image':img,
|
61 |
+
'label': mask,
|
62 |
+
'p_label':point_label,
|
63 |
+
'pt':pt,
|
64 |
+
'image_meta_dict':image_meta_dict,
|
65 |
+
}
|
environment.yml
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: sam_adapt
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- conda-forge
|
5 |
+
- defaults
|
6 |
+
dependencies:
|
7 |
+
- _libgcc_mutex=0.1=main
|
8 |
+
- _openmp_mutex=5.1=1_gnu
|
9 |
+
- abseil-cpp=20211102.0=hd4dd3e8_0
|
10 |
+
- absl-py=1.3.0=py310h06a4308_0
|
11 |
+
- aiohttp=3.8.3=py310h5eee18b_0
|
12 |
+
- async-timeout=4.0.2=py310h06a4308_0
|
13 |
+
- attrs=22.1.0=py310h06a4308_0
|
14 |
+
- blas=1.0=mkl
|
15 |
+
- blosc=1.21.3=h6a678d5_0
|
16 |
+
- bottleneck=1.3.5=py310ha9d4c09_0
|
17 |
+
- brotli=1.0.9=h5eee18b_7
|
18 |
+
- brotli-bin=1.0.9=h5eee18b_7
|
19 |
+
- brotlipy=0.7.0=py310h7f8727e_1002
|
20 |
+
- brunsli=0.1=h2531618_0
|
21 |
+
- bzip2=1.0.8=h7b6447c_0
|
22 |
+
- c-ares=1.19.0=h5eee18b_0
|
23 |
+
- ca-certificates=2023.11.17=hbcca054_0
|
24 |
+
- cffi=1.15.1=py310h5eee18b_3
|
25 |
+
- cfitsio=3.470=h5893167_7
|
26 |
+
- charls=2.2.0=h2531618_0
|
27 |
+
- cloudpickle=2.2.1=py310h06a4308_0
|
28 |
+
- comm=0.1.4=pyhd8ed1ab_0
|
29 |
+
- contourpy=1.0.5=py310hdb19cb5_0
|
30 |
+
- cpuonly=2.0=0
|
31 |
+
- cryptography=39.0.1=py310h9ce1e76_0
|
32 |
+
- cudatoolkit=11.3.1=h2bc3f7f_2
|
33 |
+
- cytoolz=0.12.0=py310h5eee18b_0
|
34 |
+
- dask-core=2023.4.1=py310h06a4308_0
|
35 |
+
- dbus=1.13.18=hb2f20db_0
|
36 |
+
- debugpy=1.6.7=py310h6a678d5_0
|
37 |
+
- decorator=5.1.1=pyhd8ed1ab_0
|
38 |
+
- expat=2.4.9=h6a678d5_0
|
39 |
+
- ffmpeg=4.3=hf484d3e_0
|
40 |
+
- fontconfig=2.14.1=h4c34cd2_2
|
41 |
+
- freetype=2.12.1=h4a9f257_0
|
42 |
+
- frozenlist=1.3.3=py310h5eee18b_0
|
43 |
+
- fsspec=2023.4.0=py310h06a4308_0
|
44 |
+
- giflib=5.2.1=h5eee18b_3
|
45 |
+
- glib=2.69.1=he621ea3_2
|
46 |
+
- gmp=6.2.1=h295c915_3
|
47 |
+
- gnutls=3.6.15=he1e5248_0
|
48 |
+
- grpc-cpp=1.48.2=h5bf31a4_0
|
49 |
+
- grpcio=1.48.2=py310h5bf31a4_0
|
50 |
+
- gst-plugins-base=1.14.1=h6a678d5_1
|
51 |
+
- gstreamer=1.14.1=h5eee18b_1
|
52 |
+
- icu=58.2=he6710b0_3
|
53 |
+
- idna=3.4=py310h06a4308_0
|
54 |
+
- imagecodecs=2021.8.26=py310h46e8fbd_2
|
55 |
+
- imageio=2.26.0=py310h06a4308_0
|
56 |
+
- importlib-metadata=6.0.0=py310h06a4308_0
|
57 |
+
- importlib_metadata=6.0.0=hd8ed1ab_0
|
58 |
+
- intel-openmp=2021.4.0=h06a4308_3561
|
59 |
+
- ipykernel=6.26.0=pyhf8b6a83_0
|
60 |
+
- joblib=1.1.1=py310h06a4308_0
|
61 |
+
- jpeg=9e=h5eee18b_1
|
62 |
+
- jupyter_client=8.6.0=pyhd8ed1ab_0
|
63 |
+
- jupyter_core=5.5.0=py310hff52083_0
|
64 |
+
- jxrlib=1.1=h7b6447c_2
|
65 |
+
- kiwisolver=1.4.4=py310h6a678d5_0
|
66 |
+
- krb5=1.19.4=h568e23c_0
|
67 |
+
- lame=3.100=h7b6447c_0
|
68 |
+
- lazy_loader=0.1=py310h06a4308_0
|
69 |
+
- lcms2=2.12=h3be6417_0
|
70 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
71 |
+
- lerc=3.0=h295c915_0
|
72 |
+
- libaec=1.0.4=he6710b0_1
|
73 |
+
- libbrotlicommon=1.0.9=h5eee18b_7
|
74 |
+
- libbrotlidec=1.0.9=h5eee18b_7
|
75 |
+
- libbrotlienc=1.0.9=h5eee18b_7
|
76 |
+
- libclang=14.0.6=default_hc6dbbc7_1
|
77 |
+
- libclang13=14.0.6=default_he11475f_1
|
78 |
+
- libcurl=7.88.1=h91b91d3_0
|
79 |
+
- libdeflate=1.17=h5eee18b_0
|
80 |
+
- libedit=3.1.20221030=h5eee18b_0
|
81 |
+
- libev=4.33=h7f8727e_1
|
82 |
+
- libevent=2.1.12=h8f2d780_0
|
83 |
+
- libffi=3.4.2=h6a678d5_6
|
84 |
+
- libgcc=7.2.0=h69d50b8_2
|
85 |
+
- libgcc-ng=11.2.0=h1234567_1
|
86 |
+
- libgfortran-ng=11.2.0=h00389a5_1
|
87 |
+
- libgfortran5=11.2.0=h1234567_1
|
88 |
+
- libgomp=11.2.0=h1234567_1
|
89 |
+
- libiconv=1.16=h7f8727e_2
|
90 |
+
- libidn2=2.3.2=h7f8727e_0
|
91 |
+
- libllvm14=14.0.6=hdb19cb5_2
|
92 |
+
- libnghttp2=1.46.0=hce63b2e_0
|
93 |
+
- libpng=1.6.39=h5eee18b_0
|
94 |
+
- libpq=12.9=h16c4e8d_3
|
95 |
+
- libprotobuf=3.20.3=he621ea3_0
|
96 |
+
- libsodium=1.0.18=h36c2ea0_1
|
97 |
+
- libssh2=1.10.0=h8f2d780_0
|
98 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
99 |
+
- libtasn1=4.19.0=h5eee18b_0
|
100 |
+
- libtiff=4.5.0=h6a678d5_2
|
101 |
+
- libunistring=0.9.10=h27cfd23_0
|
102 |
+
- libuuid=1.41.5=h5eee18b_0
|
103 |
+
- libwebp=1.2.4=h11a3e52_1
|
104 |
+
- libwebp-base=1.2.4=h5eee18b_1
|
105 |
+
- libxcb=1.15=h7f8727e_0
|
106 |
+
- libxkbcommon=1.0.1=h5eee18b_1
|
107 |
+
- libxml2=2.10.3=hcbfbd50_0
|
108 |
+
- libxslt=1.1.37=h2085143_0
|
109 |
+
- libzopfli=1.0.3=he6710b0_0
|
110 |
+
- locket=1.0.0=py310h06a4308_0
|
111 |
+
- lz4-c=1.9.4=h6a678d5_0
|
112 |
+
- markdown=3.4.1=py310h06a4308_0
|
113 |
+
- markupsafe=2.1.1=py310h7f8727e_0
|
114 |
+
- matplotlib=3.7.1=py310h06a4308_1
|
115 |
+
- matplotlib-base=3.7.1=py310h1128e8f_1
|
116 |
+
- matplotlib-inline=0.1.6=pyhd8ed1ab_0
|
117 |
+
- mkl=2021.4.0=h06a4308_640
|
118 |
+
- mkl-service=2.4.0=py310h7f8727e_0
|
119 |
+
- mkl_fft=1.3.1=py310hd6ae3a3_0
|
120 |
+
- mkl_random=1.2.2=py310h00e6091_0
|
121 |
+
- monai=1.1.0=pyhd8ed1ab_0
|
122 |
+
- multidict=6.0.2=py310h5eee18b_0
|
123 |
+
- munkres=1.1.4=pyh9f0ad1d_0
|
124 |
+
- ncurses=6.4=h6a678d5_0
|
125 |
+
- nest-asyncio=1.5.8=pyhd8ed1ab_0
|
126 |
+
- nettle=3.7.3=hbbd107a_1
|
127 |
+
- networkx=2.8.4=py310h06a4308_1
|
128 |
+
- nspr=4.33=h295c915_0
|
129 |
+
- nss=3.74=h0370c37_0
|
130 |
+
- numexpr=2.8.4=py310h8879344_0
|
131 |
+
- numpy=1.24.3=py310hd5efca6_0
|
132 |
+
- numpy-base=1.24.3=py310h8e6c178_0
|
133 |
+
- oauthlib=3.2.2=py310h06a4308_0
|
134 |
+
- openh264=2.1.1=h4ff587b_0
|
135 |
+
- openjpeg=2.4.0=h3ad879b_0
|
136 |
+
- openssl=1.1.1w=h7f8727e_0
|
137 |
+
- packaging=23.0=py310h06a4308_0
|
138 |
+
- pandas=1.5.3=py310h1128e8f_0
|
139 |
+
- parso=0.8.3=pyhd8ed1ab_0
|
140 |
+
- pcre=8.45=h295c915_0
|
141 |
+
- pexpect=4.8.0=pyh1a96a4e_2
|
142 |
+
- pickleshare=0.7.5=py_1003
|
143 |
+
- pillow=9.4.0=py310h6a678d5_0
|
144 |
+
- pip=23.0.1=py310h06a4308_0
|
145 |
+
- platformdirs=4.1.0=pyhd8ed1ab_0
|
146 |
+
- ply=3.11=py310h06a4308_0
|
147 |
+
- protobuf=3.20.3=py310h6a678d5_0
|
148 |
+
- ptyprocess=0.7.0=pyhd3deb0d_0
|
149 |
+
- pure_eval=0.2.2=pyhd8ed1ab_0
|
150 |
+
- pycparser=2.21=pyhd8ed1ab_0
|
151 |
+
- pyjwt=2.4.0=py310h06a4308_0
|
152 |
+
- pyopenssl=23.0.0=py310h06a4308_0
|
153 |
+
- pyparsing=3.0.9=py310h06a4308_0
|
154 |
+
- pyqt=5.15.7=py310h6a678d5_1
|
155 |
+
- pysocks=1.7.1=py310h06a4308_0
|
156 |
+
- python=3.10.11=h7a1cb2a_2
|
157 |
+
- python-dateutil=2.8.2=pyhd8ed1ab_0
|
158 |
+
- python_abi=3.10=2_cp310
|
159 |
+
- pytorch-mutex=1.0=cpu
|
160 |
+
- pytz=2022.7=py310h06a4308_0
|
161 |
+
- pyu2f=0.1.5=pyhd8ed1ab_0
|
162 |
+
- pywavelets=1.4.1=py310h5eee18b_0
|
163 |
+
- pyyaml=6.0=py310h5eee18b_1
|
164 |
+
- pyzmq=23.0.0=py310h330234f_0
|
165 |
+
- qt-main=5.15.2=h8373d8f_8
|
166 |
+
- qt-webengine=5.15.9=hbbf29b9_6
|
167 |
+
- qtwebkit=5.212=h3fafdc1_5
|
168 |
+
- re2=2022.04.01=h295c915_0
|
169 |
+
- readline=8.2=h5eee18b_0
|
170 |
+
- requests=2.29.0=py310h06a4308_0
|
171 |
+
- scikit-image=0.20.0=py310h6a678d5_0
|
172 |
+
- scikit-learn=1.2.2=py310h6a678d5_0
|
173 |
+
- scipy=1.10.1=py310hd5efca6_0
|
174 |
+
- seaborn=0.12.2=py310h06a4308_0
|
175 |
+
- setuptools=66.0.0=py310h06a4308_0
|
176 |
+
- sip=6.6.2=py310h6a678d5_0
|
177 |
+
- six=1.16.0=pyh6c4a22f_0
|
178 |
+
- snappy=1.1.9=h295c915_0
|
179 |
+
- sqlite=3.41.2=h5eee18b_0
|
180 |
+
- stack_data=0.6.2=pyhd8ed1ab_0
|
181 |
+
- tensorboard=2.11.0=py310h06a4308_0
|
182 |
+
- tensorboard-data-server=0.6.1=py310h52d8a92_0
|
183 |
+
- tensorboard-plugin-wit=1.8.1=py310h06a4308_0
|
184 |
+
- tk=8.6.12=h1ccaba5_0
|
185 |
+
- toml=0.10.2=pyhd8ed1ab_0
|
186 |
+
- toolz=0.12.0=py310h06a4308_0
|
187 |
+
- torchaudio=0.12.1=py310_cpu
|
188 |
+
- tornado=6.2=py310h5eee18b_0
|
189 |
+
- tqdm=4.65.0=py310h2f386ee_0
|
190 |
+
- typing_extensions=4.5.0=py310h06a4308_0
|
191 |
+
- tzdata=2023c=h04d1e81_0
|
192 |
+
- unicodedata2=14.0.0=py310h5764c6d_1
|
193 |
+
- urllib3=1.26.15=py310h06a4308_0
|
194 |
+
- wheel=0.38.4=py310h06a4308_0
|
195 |
+
- xz=5.4.2=h5eee18b_0
|
196 |
+
- yaml=0.2.5=h7b6447c_0
|
197 |
+
- yarl=1.8.1=py310h5eee18b_0
|
198 |
+
- zeromq=4.3.4=h9c3ff4c_1
|
199 |
+
- zfp=0.5.5=h295c915_6
|
200 |
+
- zipp=3.11.0=py310h06a4308_0
|
201 |
+
- zlib=1.2.13=h5eee18b_0
|
202 |
+
- zstd=1.5.5=hc292b87_0
|
203 |
+
- pip:
|
204 |
+
- aiosignal==1.2.0
|
205 |
+
- alembic==1.10.4
|
206 |
+
- appdirs==1.4.4
|
207 |
+
- astor==0.8.1
|
208 |
+
- asttokens==2.2.1
|
209 |
+
- backcall==0.2.0
|
210 |
+
- beautifulsoup4==4.12.2
|
211 |
+
- blinker==1.6.2
|
212 |
+
- cachetools==4.2.2
|
213 |
+
- certifi==2022.12.7
|
214 |
+
- charset-normalizer==2.0.4
|
215 |
+
- click==8.1.3
|
216 |
+
- cmaes==0.9.1
|
217 |
+
- colorama==0.4.6
|
218 |
+
- colorlog==6.7.0
|
219 |
+
- contextlib2==21.6.0
|
220 |
+
- coverage==6.5.0
|
221 |
+
- coveralls==3.3.1
|
222 |
+
- cucim==23.4.1
|
223 |
+
- cycler==0.11.0
|
224 |
+
- databricks-cli==0.17.7
|
225 |
+
- docker==6.1.1
|
226 |
+
- docopt==0.6.2
|
227 |
+
- einops==0.6.1
|
228 |
+
- entrypoints==0.4
|
229 |
+
- exceptiongroup==1.1.1
|
230 |
+
- executing==1.2.0
|
231 |
+
- filelock==3.12.0
|
232 |
+
- fire==0.5.0
|
233 |
+
- flask==2.3.2
|
234 |
+
- fonttools==4.25.0
|
235 |
+
- future==0.18.3
|
236 |
+
- gdown==4.7.1
|
237 |
+
- gitdb==4.0.10
|
238 |
+
- gitpython==3.1.31
|
239 |
+
- google-auth==2.6.0
|
240 |
+
- google-auth-oauthlib==0.4.4
|
241 |
+
- greenlet==2.0.2
|
242 |
+
- gunicorn==20.1.0
|
243 |
+
- h5py==3.8.0
|
244 |
+
- huggingface-hub==0.14.1
|
245 |
+
- iniconfig==2.0.0
|
246 |
+
- ipython==8.13.1
|
247 |
+
- itk==5.3.0
|
248 |
+
- itk-core==5.3.0
|
249 |
+
- itk-filtering==5.3.0
|
250 |
+
- itk-io==5.3.0
|
251 |
+
- itk-numerics==5.3.0
|
252 |
+
- itk-registration==5.3.0
|
253 |
+
- itk-segmentation==5.3.0
|
254 |
+
- itsdangerous==2.1.2
|
255 |
+
- jedi==0.18.2
|
256 |
+
- jinja2==3.1.2
|
257 |
+
- json-tricks==3.16.1
|
258 |
+
- jsonschema==4.17.3
|
259 |
+
- kornia==0.4.1
|
260 |
+
- lmdb==1.4.1
|
261 |
+
- lucent==0.1.0
|
262 |
+
- mako==1.2.4
|
263 |
+
- mlflow==2.3.1
|
264 |
+
- nibabel==5.1.0
|
265 |
+
- ninja==1.11.1
|
266 |
+
- nni==2.10
|
267 |
+
- nptyping==2.5.0
|
268 |
+
- opencv-python==4.7.0.72
|
269 |
+
- openslide-python==1.1.2
|
270 |
+
- optuna==3.1.1
|
271 |
+
- partd==1.2.0
|
272 |
+
- pluggy==1.0.0
|
273 |
+
- pooch==1.4.0
|
274 |
+
- prettytable==3.7.0
|
275 |
+
- prompt-toolkit==3.0.38
|
276 |
+
- psutil==5.9.5
|
277 |
+
- pyarrow==11.0.0
|
278 |
+
- pyasn1==0.4.8
|
279 |
+
- pyasn1-modules==0.2.8
|
280 |
+
- pydicom==2.3.1
|
281 |
+
- pygments==2.15.1
|
282 |
+
- pynrrd==1.0.0
|
283 |
+
- pyqt5-sip==12.11.0
|
284 |
+
- pyrsistent==0.19.3
|
285 |
+
- pytest==7.3.1
|
286 |
+
- pytest-mock==3.10.0
|
287 |
+
- pythonwebhdfs==0.2.3
|
288 |
+
- pytorch-ignite==0.4.10
|
289 |
+
- querystring-parser==1.2.4
|
290 |
+
- regex==2023.5.5
|
291 |
+
- requests-oauthlib==1.3.0
|
292 |
+
- responses==0.23.1
|
293 |
+
- rsa==4.7.2
|
294 |
+
- safetensors==0.4.1
|
295 |
+
- schema==0.7.5
|
296 |
+
- simplejson==3.19.1
|
297 |
+
- smmap==5.0.0
|
298 |
+
- soupsieve==2.4.1
|
299 |
+
- sqlalchemy==2.0.12
|
300 |
+
- sqlparse==0.4.4
|
301 |
+
- tabulate==0.9.0
|
302 |
+
- tensorboardx==2.2
|
303 |
+
- termcolor==2.3.0
|
304 |
+
- threadpoolctl==2.2.0
|
305 |
+
- tifffile==2021.7.2
|
306 |
+
- timm==0.9.12
|
307 |
+
- tokenizers==0.12.1
|
308 |
+
- tomli==2.0.1
|
309 |
+
- torch==1.12.1+cu113
|
310 |
+
- torch-lucent==0.1.8
|
311 |
+
- torchvision==0.13.1+cu113
|
312 |
+
- traitlets==5.9.0
|
313 |
+
- transformers==4.21.3
|
314 |
+
- typeguard==3.0.2
|
315 |
+
- types-pyyaml==6.0.12.9
|
316 |
+
- wcwidth==0.2.6
|
317 |
+
- websocket-client==1.5.1
|
318 |
+
- websockets==11.0.3
|
319 |
+
- werkzeug==2.3.4
|
figs/EfficientSAM/EfficientSAM-S (ISIC)_loss.png
ADDED
figs/EfficientSAM/EfficientSAM-S (ISIC)_performance.png
ADDED
figs/EfficientSAM/EfficientSAM-S (REFUGE)_loss.png
ADDED