import os import numpy as np import pandas as pd import torch from PIL import Image from torch.utils.data import Dataset from utils import random_box, random_click class ISIC2016(Dataset): def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False): df = pd.read_csv(os.path.join(data_path, 'ISBI2016_ISIC_Part1_' + mode + '_GroundTruth.csv'), encoding='gbk') self.name_list = df.iloc[:,1].tolist() self.label_list = df.iloc[:,2].tolist() self.data_path = data_path self.mode = mode self.prompt = prompt self.img_size = args.image_size self.transform = transform self.transform_msk = transform_msk def __len__(self): return len(self.name_list) def __getitem__(self, index): # if self.mode == 'Training': # point_label = random.randint(0, 1) # inout = random.randint(0, 1) # else: # inout = 1 # point_label = 1 point_label = 1 """Get the images""" name = self.name_list[index] img_path = os.path.join(self.data_path, name) mask_name = self.label_list[index] msk_path = os.path.join(self.data_path, mask_name) img = Image.open(img_path).convert('RGB') mask = Image.open(msk_path).convert('L') # if self.mode == 'Training': # label = 0 if self.label_list[index] == 'benign' else 1 # else: # label = int(self.label_list[index]) newsize = (self.img_size, self.img_size) mask = mask.resize(newsize) if self.prompt == 'click': point_label, pt = random_click(np.array(mask) / 255, point_label) if self.transform: state = torch.get_rng_state() img = self.transform(img) torch.set_rng_state(state) if self.transform_msk: mask = self.transform_msk(mask).int() # if (inout == 0 and point_label == 1) or (inout == 1 and point_label == 0): # mask = 1 - mask name = name.split('/')[-1].split(".jpg")[0] image_meta_dict = {'filename_or_obj':name} return { 'image':img, 'label': mask, 'p_label':point_label, 'pt':pt, 'image_meta_dict':image_meta_dict, }