import os import numpy as np import pandas as pd import torch import torch.nn.functional as F from PIL import Image from torch.utils.data import Dataset from utils import random_box, random_click class REFUGE(Dataset): def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'none', plane = False): self.data_path = data_path self.subfolders = [f.path for f in os.scandir(os.path.join(data_path, mode + '-400')) if f.is_dir()] self.mode = mode self.prompt = prompt self.img_size = args.image_size self.mask_size = args.out_size self.transform = transform self.transform_msk = transform_msk def __len__(self): return len(self.subfolders) def __getitem__(self, index): point_label = 1 """Get the images""" subfolder = self.subfolders[index] name = subfolder.split('/')[-1] # raw image and raters path img_path = os.path.join(subfolder, name + '.jpg') multi_rater_cup_path = [os.path.join(subfolder, name + '_seg_cup_' + str(i) + '.png') for i in range(1, 8)] multi_rater_disc_path = [os.path.join(subfolder, name + '_seg_disc_' + str(i) + '.png') for i in range(1, 8)] # raw image and raters images img = Image.open(img_path).convert('RGB') multi_rater_cup = [Image.open(path).convert('L') for path in multi_rater_cup_path] multi_rater_disc = [Image.open(path).convert('L') for path in multi_rater_disc_path] # resize raters images for generating initial point click newsize = (self.img_size, self.img_size) multi_rater_cup_np = [np.array(single_rater.resize(newsize)) for single_rater in multi_rater_cup] multi_rater_disc_np = [np.array(single_rater.resize(newsize)) for single_rater in multi_rater_disc] # first click is the target agreement among most raters if self.prompt == 'click': point_label, pt = random_click(np.array(np.mean(np.stack(multi_rater_cup_np), axis=0)) / 255, point_label) point_label, pt_disc = random_click(np.array(np.mean(np.stack(multi_rater_disc_np), axis=0)) / 255, point_label) else: # you may want to get rid of click prompts pt = np.array([0, 0], dtype=np.int32) if self.transform: state = torch.get_rng_state() img = self.transform(img) multi_rater_cup = [torch.as_tensor((self.transform(single_rater) >0.5).float(), dtype=torch.float32) for single_rater in multi_rater_cup] multi_rater_cup = torch.stack(multi_rater_cup, dim=0) # transform to mask size (out_size) for mask define mask_cup = F.interpolate(multi_rater_cup, size=(self.mask_size, self.mask_size), mode='bilinear', align_corners=False).mean(dim=0) multi_rater_disc = [torch.as_tensor((self.transform(single_rater) >0.5).float(), dtype=torch.float32) for single_rater in multi_rater_disc] multi_rater_disc = torch.stack(multi_rater_disc, dim=0) mask_disc = F.interpolate(multi_rater_disc, size=(self.mask_size, self.mask_size), mode='bilinear', align_corners=False).mean(dim=0) torch.set_rng_state(state) mask = torch.concat([mask_cup, mask_disc], dim=0) if self.prompt == 'box': x_min_cup, x_max_cup, y_min_cup, y_max_cup = random_box(multi_rater_cup) box_cup = [x_min_cup, x_max_cup, y_min_cup, y_max_cup] x_min_disc, x_max_disc, y_min_disc, y_max_disc = random_box(multi_rater_disc) box_disc = [x_min_disc, x_max_disc, y_min_disc, y_max_disc] else: # you may want to get rid of box prompts box_cup = [0, 0, 0, 0] box_disc = [0, 0, 0, 0] image_meta_dict = {'filename_or_obj':name} return { 'image':img, 'label': mask, 'p_label':point_label, 'pt':pt, 'box': box_cup, 'image_meta_dict':image_meta_dict, }