File size: 12,011 Bytes
822dda9 0c9630a 4d5d3b7 f7af1db 4d5d3b7 f7af1db 822dda9 f7af1db 0e04908 f7af1db 0e04908 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 0e04908 4d5d3b7 784383b 4d5d3b7 784383b 4d5d3b7 784383b 4d5d3b7 784383b 4d5d3b7 784383b 4d5d3b7 0e04908 f7af1db 0e04908 f7af1db 4d5d3b7 0e04908 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 0e04908 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 0e04908 f7af1db 784383b 4d5d3b7 0e04908 f7af1db 363bda3 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 4d5d3b7 f7af1db 784383b f7af1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration, AutoModelForSequenceClassification, AutoTokenizer
import librosa
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
import os
import pandas as pd
from scipy.stats import kurtosis, skew
warnings.filterwarnings('ignore')
# Global variables for models
processor = None
whisper_model = None
emotion_tokenizer = None
emotion_model = None
def load_models():
"""Initialize and load all required models"""
global processor, whisper_model, emotion_tokenizer, emotion_model
try:
print("Loading Whisper model...")
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
print("Loading emotion model...")
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Move models to CPU explicitly
whisper_model.to("cpu")
emotion_model.to("cpu")
print("Models loaded successfully!")
return True
except Exception as e:
print(f"Error loading models: {str(e)}")
return False
def extract_voice_features(waveform, sr):
"""Extract comprehensive voice features for health analysis"""
features = {}
try:
# 1. Fundamental Frequency (F0) Statistics
f0, voiced_flag, _ = librosa.pyin(waveform,
fmin=librosa.note_to_hz('C2'),
fmax=librosa.note_to_hz('C7'))
f0_valid = f0[voiced_flag]
features['f0_mean'] = np.mean(f0_valid)
features['f0_std'] = np.std(f0_valid)
features['f0_range'] = np.ptp(f0_valid)
# 2. Jitter (F0 Variation)
if len(f0_valid) > 1:
f0_diff = np.diff(f0_valid)
features['jitter'] = np.mean(np.abs(f0_diff))
features['jitter_percent'] = (features['jitter'] / features['f0_mean']) * 100
# 3. Shimmer (Amplitude Variation)
amplitude_envelope = np.abs(librosa.stft(waveform))
features['shimmer'] = np.mean(np.std(amplitude_envelope, axis=1))
# 4. Spectral Features
spectral_centroids = librosa.feature.spectral_centroid(y=waveform, sr=sr)[0]
features['spectral_centroid_mean'] = np.mean(spectral_centroids)
features['spectral_centroid_std'] = np.std(spectral_centroids)
spectral_rolloff = librosa.feature.spectral_rolloff(y=waveform, sr=sr)[0]
features['spectral_rolloff_mean'] = np.mean(spectral_rolloff)
# 5. Voice Quality Measures
mfccs = librosa.feature.mfcc(y=waveform, sr=sr, n_mfcc=13)
features['mfcc_means'] = np.mean(mfccs, axis=1)
features['mfcc_stds'] = np.std(mfccs, axis=1)
# 6. Rhythm and Timing
tempo, _ = librosa.beat.beat_track(y=waveform, sr=sr)
features['speech_rate'] = tempo
# 7. Energy Features
rms = librosa.feature.rms(y=waveform)[0]
features['energy_mean'] = np.mean(rms)
features['energy_std'] = np.std(rms)
features['energy_kurtosis'] = kurtosis(rms)
features['energy_skewness'] = skew(rms)
# 8. Pause Analysis
silence_threshold = 0.01
is_silence = rms < silence_threshold
silence_regions = librosa.effects.split(waveform, top_db=20)
features['pause_count'] = len(silence_regions)
features['average_pause_duration'] = np.mean([r[1] - r[0] for r in silence_regions]) / sr
return features, True
except Exception as e:
print(f"Error extracting voice features: {str(e)}")
return {}, False
def create_voice_analysis_plots(features):
"""Create comprehensive visualization of voice analysis"""
try:
# Create subplot figure
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
'Fundamental Frequency Analysis',
'Voice Quality Measures',
'Energy and Rhythm Analysis',
'MFCC Analysis'
)
)
# 1. F0 Analysis Plot
f0_metrics = {
'Mean F0': features['f0_mean'],
'F0 Std Dev': features['f0_std'],
'F0 Range': features['f0_range'],
'Jitter %': features['jitter_percent']
}
fig.add_trace(
go.Bar(
x=list(f0_metrics.keys()),
y=list(f0_metrics.values()),
name='F0 Metrics'
),
row=1, col=1
)
# 2. Voice Quality Plot
quality_metrics = {
'Shimmer': features['shimmer'],
'Spectral Centroid': features['spectral_centroid_mean'] / 1000, # Scale for visibility
'Spectral Rolloff': features['spectral_rolloff_mean'] / 1000 # Scale for visibility
}
fig.add_trace(
go.Bar(
x=list(quality_metrics.keys()),
y=list(quality_metrics.values()),
name='Voice Quality'
),
row=1, col=2
)
# 3. Energy and Rhythm Plot
energy_metrics = {
'Energy Mean': features['energy_mean'],
'Energy Std': features['energy_std'],
'Speech Rate': features['speech_rate'] / 10, # Scale for visibility
'Pause Count': features['pause_count']
}
fig.add_trace(
go.Bar(
x=list(energy_metrics.keys()),
y=list(energy_metrics.values()),
name='Energy & Rhythm'
),
row=2, col=1
)
# 4. MFCC Analysis Plot
fig.add_trace(
go.Scatter(
y=features['mfcc_means'],
mode='lines+markers',
name='MFCC Coefficients'
),
row=2, col=2
)
# Update layout
fig.update_layout(
height=800,
showlegend=False,
title_text="Comprehensive Voice Analysis",
)
return fig.to_html(include_plotlyjs=True)
except Exception as e:
print(f"Error creating voice analysis plots: {str(e)}")
return "Error creating visualizations"
def analyze_audio(audio_input):
"""Main function to analyze audio input"""
try:
if audio_input is None:
print("No audio input provided")
return "No audio file provided", "Please provide an audio file", ""
print(f"Received audio input: {audio_input}")
# Load and process audio
if isinstance(audio_input, tuple):
audio_path = audio_input[0]
else:
audio_path = audio_input
# Load audio with original sampling rate
waveform, sr = librosa.load(audio_path, sr=None)
# Extract voice features
voice_features, success = extract_voice_features(waveform, sr)
if not success:
return "Error extracting voice features", "Analysis failed", ""
# Create voice analysis visualization
voice_analysis_html = create_voice_analysis_plots(voice_features)
# Transcribe audio
print("Transcribing audio...")
# Resample for Whisper model
waveform_16k = librosa.resample(waveform, orig_sr=sr, target_sr=16000)
inputs = processor(waveform_16k, sampling_rate=16000, return_tensors="pt").input_features
with torch.no_grad():
predicted_ids = whisper_model.generate(inputs)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# Analyze emotions
print("Analyzing emotions...")
inputs = emotion_tokenizer(
transcription,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
with torch.no_grad():
outputs = emotion_model(**inputs)
emotions = torch.nn.functional.softmax(outputs.logits, dim=-1)
emotion_labels = ['anger', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
emotion_scores = {
label: float(score)
for label, score in zip(emotion_labels, emotions[0].cpu().numpy())
}
# Create emotion visualization
emotion_viz = create_emotion_plot(emotion_scores)
# Generate analysis summary
summary = f"""Voice Analysis Summary:
Speech Characteristics:
- Fundamental Frequency (Pitch): {voice_features['f0_mean']:.2f} Hz (average)
- Jitter: {voice_features['jitter_percent']:.2f}% (voice stability)
- Speech Rate: {voice_features['speech_rate']:.2f} BPM
- Number of Pauses: {voice_features['pause_count']}
- Average Pause Duration: {voice_features['average_pause_duration']:.2f} seconds
Voice Quality Indicators:
- Shimmer: {voice_features['shimmer']:.4f} (amplitude variation)
- Energy Distribution: {voice_features['energy_skewness']:.2f} (skewness)
- Spectral Centroid: {voice_features['spectral_centroid_mean']:.2f} Hz
Emotional Content:
- Primary Emotion: {max(emotion_scores.items(), key=lambda x: x[1])[0]}
- Emotional Variability: {np.std(list(emotion_scores.values())):.2f}
Speech Content:
{transcription}
"""
return summary, emotion_viz, voice_analysis_html
except Exception as e:
error_msg = f"Error analyzing audio: {str(e)}"
print(error_msg)
return error_msg, "Error in analysis", ""
# Load models at startup
print("Initializing application...")
if not load_models():
raise RuntimeError("Failed to load required models")
# Create Gradio interface
demo = gr.Interface(
fn=analyze_audio,
inputs=gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Audio Input"
),
outputs=[
gr.Textbox(label="Analysis Summary", lines=10),
gr.HTML(label="Emotional Analysis"),
gr.HTML(label="Voice Biomarker Analysis")
],
title="Comprehensive Vocal Biomarker Analysis",
description="""
This application performs comprehensive analysis of voice recordings to extract potential health-related biomarkers:
1. Speech Characteristics:
- Fundamental frequency analysis
- Voice stability measures (jitter, shimmer)
- Speech rate and rhythm
2. Voice Quality Analysis:
- Spectral features
- Energy distribution
- MFCC analysis
3. Emotional Content:
- Emotion detection
- Emotional stability analysis
4. Speech Content:
- Text transcription
- Pause analysis
Upload an audio file or record directly through your microphone.
""",
article="""
### About Vocal Biomarkers
Vocal biomarkers are measurable indicators in the human voice that can potentially indicate various health conditions.
This analysis focuses on several key aspects:
- **Voice Quality**: Changes in voice quality can indicate respiratory or neurological conditions
- **Prosody**: Speech rhythm and timing can be indicators of cognitive function
- **Emotional Content**: Emotional patterns can be relevant to mental health assessment
- **Acoustic Features**: Specific acoustic patterns may correlate with various health conditions
Note: This is a demonstration tool and should not be used for medical diagnosis.
""",
examples=None,
cache_examples=False
)
if __name__ == "__main__":
demo.launch(debug=True) |