invincible-jha's picture
Upload app.py
4d5d3b7 verified
raw
history blame
12 kB
import gradio as gr
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration, AutoModelForSequenceClassification, AutoTokenizer
import librosa
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
import os
import pandas as pd
from scipy.stats import kurtosis, skew
warnings.filterwarnings('ignore')
# Global variables for models
processor = None
whisper_model = None
emotion_tokenizer = None
emotion_model = None
def load_models():
"""Initialize and load all required models"""
global processor, whisper_model, emotion_tokenizer, emotion_model
try:
print("Loading Whisper model...")
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
print("Loading emotion model...")
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Move models to CPU explicitly
whisper_model.to("cpu")
emotion_model.to("cpu")
print("Models loaded successfully!")
return True
except Exception as e:
print(f"Error loading models: {str(e)}")
return False
def extract_voice_features(waveform, sr):
"""Extract comprehensive voice features for health analysis"""
features = {}
try:
# 1. Fundamental Frequency (F0) Statistics
f0, voiced_flag, _ = librosa.pyin(waveform,
fmin=librosa.note_to_hz('C2'),
fmax=librosa.note_to_hz('C7'))
f0_valid = f0[voiced_flag]
features['f0_mean'] = np.mean(f0_valid)
features['f0_std'] = np.std(f0_valid)
features['f0_range'] = np.ptp(f0_valid)
# 2. Jitter (F0 Variation)
if len(f0_valid) > 1:
f0_diff = np.diff(f0_valid)
features['jitter'] = np.mean(np.abs(f0_diff))
features['jitter_percent'] = (features['jitter'] / features['f0_mean']) * 100
# 3. Shimmer (Amplitude Variation)
amplitude_envelope = np.abs(librosa.stft(waveform))
features['shimmer'] = np.mean(np.std(amplitude_envelope, axis=1))
# 4. Spectral Features
spectral_centroids = librosa.feature.spectral_centroid(y=waveform, sr=sr)[0]
features['spectral_centroid_mean'] = np.mean(spectral_centroids)
features['spectral_centroid_std'] = np.std(spectral_centroids)
spectral_rolloff = librosa.feature.spectral_rolloff(y=waveform, sr=sr)[0]
features['spectral_rolloff_mean'] = np.mean(spectral_rolloff)
# 5. Voice Quality Measures
mfccs = librosa.feature.mfcc(y=waveform, sr=sr, n_mfcc=13)
features['mfcc_means'] = np.mean(mfccs, axis=1)
features['mfcc_stds'] = np.std(mfccs, axis=1)
# 6. Rhythm and Timing
tempo, _ = librosa.beat.beat_track(y=waveform, sr=sr)
features['speech_rate'] = tempo
# 7. Energy Features
rms = librosa.feature.rms(y=waveform)[0]
features['energy_mean'] = np.mean(rms)
features['energy_std'] = np.std(rms)
features['energy_kurtosis'] = kurtosis(rms)
features['energy_skewness'] = skew(rms)
# 8. Pause Analysis
silence_threshold = 0.01
is_silence = rms < silence_threshold
silence_regions = librosa.effects.split(waveform, top_db=20)
features['pause_count'] = len(silence_regions)
features['average_pause_duration'] = np.mean([r[1] - r[0] for r in silence_regions]) / sr
return features, True
except Exception as e:
print(f"Error extracting voice features: {str(e)}")
return {}, False
def create_voice_analysis_plots(features):
"""Create comprehensive visualization of voice analysis"""
try:
# Create subplot figure
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
'Fundamental Frequency Analysis',
'Voice Quality Measures',
'Energy and Rhythm Analysis',
'MFCC Analysis'
)
)
# 1. F0 Analysis Plot
f0_metrics = {
'Mean F0': features['f0_mean'],
'F0 Std Dev': features['f0_std'],
'F0 Range': features['f0_range'],
'Jitter %': features['jitter_percent']
}
fig.add_trace(
go.Bar(
x=list(f0_metrics.keys()),
y=list(f0_metrics.values()),
name='F0 Metrics'
),
row=1, col=1
)
# 2. Voice Quality Plot
quality_metrics = {
'Shimmer': features['shimmer'],
'Spectral Centroid': features['spectral_centroid_mean'] / 1000, # Scale for visibility
'Spectral Rolloff': features['spectral_rolloff_mean'] / 1000 # Scale for visibility
}
fig.add_trace(
go.Bar(
x=list(quality_metrics.keys()),
y=list(quality_metrics.values()),
name='Voice Quality'
),
row=1, col=2
)
# 3. Energy and Rhythm Plot
energy_metrics = {
'Energy Mean': features['energy_mean'],
'Energy Std': features['energy_std'],
'Speech Rate': features['speech_rate'] / 10, # Scale for visibility
'Pause Count': features['pause_count']
}
fig.add_trace(
go.Bar(
x=list(energy_metrics.keys()),
y=list(energy_metrics.values()),
name='Energy & Rhythm'
),
row=2, col=1
)
# 4. MFCC Analysis Plot
fig.add_trace(
go.Scatter(
y=features['mfcc_means'],
mode='lines+markers',
name='MFCC Coefficients'
),
row=2, col=2
)
# Update layout
fig.update_layout(
height=800,
showlegend=False,
title_text="Comprehensive Voice Analysis",
)
return fig.to_html(include_plotlyjs=True)
except Exception as e:
print(f"Error creating voice analysis plots: {str(e)}")
return "Error creating visualizations"
def analyze_audio(audio_input):
"""Main function to analyze audio input"""
try:
if audio_input is None:
print("No audio input provided")
return "No audio file provided", "Please provide an audio file", ""
print(f"Received audio input: {audio_input}")
# Load and process audio
if isinstance(audio_input, tuple):
audio_path = audio_input[0]
else:
audio_path = audio_input
# Load audio with original sampling rate
waveform, sr = librosa.load(audio_path, sr=None)
# Extract voice features
voice_features, success = extract_voice_features(waveform, sr)
if not success:
return "Error extracting voice features", "Analysis failed", ""
# Create voice analysis visualization
voice_analysis_html = create_voice_analysis_plots(voice_features)
# Transcribe audio
print("Transcribing audio...")
# Resample for Whisper model
waveform_16k = librosa.resample(waveform, orig_sr=sr, target_sr=16000)
inputs = processor(waveform_16k, sampling_rate=16000, return_tensors="pt").input_features
with torch.no_grad():
predicted_ids = whisper_model.generate(inputs)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# Analyze emotions
print("Analyzing emotions...")
inputs = emotion_tokenizer(
transcription,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
with torch.no_grad():
outputs = emotion_model(**inputs)
emotions = torch.nn.functional.softmax(outputs.logits, dim=-1)
emotion_labels = ['anger', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
emotion_scores = {
label: float(score)
for label, score in zip(emotion_labels, emotions[0].cpu().numpy())
}
# Create emotion visualization
emotion_viz = create_emotion_plot(emotion_scores)
# Generate analysis summary
summary = f"""Voice Analysis Summary:
Speech Characteristics:
- Fundamental Frequency (Pitch): {voice_features['f0_mean']:.2f} Hz (average)
- Jitter: {voice_features['jitter_percent']:.2f}% (voice stability)
- Speech Rate: {voice_features['speech_rate']:.2f} BPM
- Number of Pauses: {voice_features['pause_count']}
- Average Pause Duration: {voice_features['average_pause_duration']:.2f} seconds
Voice Quality Indicators:
- Shimmer: {voice_features['shimmer']:.4f} (amplitude variation)
- Energy Distribution: {voice_features['energy_skewness']:.2f} (skewness)
- Spectral Centroid: {voice_features['spectral_centroid_mean']:.2f} Hz
Emotional Content:
- Primary Emotion: {max(emotion_scores.items(), key=lambda x: x[1])[0]}
- Emotional Variability: {np.std(list(emotion_scores.values())):.2f}
Speech Content:
{transcription}
"""
return summary, emotion_viz, voice_analysis_html
except Exception as e:
error_msg = f"Error analyzing audio: {str(e)}"
print(error_msg)
return error_msg, "Error in analysis", ""
# Load models at startup
print("Initializing application...")
if not load_models():
raise RuntimeError("Failed to load required models")
# Create Gradio interface
demo = gr.Interface(
fn=analyze_audio,
inputs=gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Audio Input"
),
outputs=[
gr.Textbox(label="Analysis Summary", lines=10),
gr.HTML(label="Emotional Analysis"),
gr.HTML(label="Voice Biomarker Analysis")
],
title="Comprehensive Vocal Biomarker Analysis",
description="""
This application performs comprehensive analysis of voice recordings to extract potential health-related biomarkers:
1. Speech Characteristics:
- Fundamental frequency analysis
- Voice stability measures (jitter, shimmer)
- Speech rate and rhythm
2. Voice Quality Analysis:
- Spectral features
- Energy distribution
- MFCC analysis
3. Emotional Content:
- Emotion detection
- Emotional stability analysis
4. Speech Content:
- Text transcription
- Pause analysis
Upload an audio file or record directly through your microphone.
""",
article="""
### About Vocal Biomarkers
Vocal biomarkers are measurable indicators in the human voice that can potentially indicate various health conditions.
This analysis focuses on several key aspects:
- **Voice Quality**: Changes in voice quality can indicate respiratory or neurological conditions
- **Prosody**: Speech rhythm and timing can be indicators of cognitive function
- **Emotional Content**: Emotional patterns can be relevant to mental health assessment
- **Acoustic Features**: Specific acoustic patterns may correlate with various health conditions
Note: This is a demonstration tool and should not be used for medical diagnosis.
""",
examples=None,
cache_examples=False
)
if __name__ == "__main__":
demo.launch(debug=True)