Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,12 +7,10 @@ from PIL import Image
|
|
7 |
|
8 |
from torch.utils.mobile_optimizer import optimize_for_mobile
|
9 |
|
10 |
-
model = timm.create_model('
|
11 |
-
model.
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#model = model.jit.load(path)
|
16 |
|
17 |
model.eval()
|
18 |
|
@@ -21,9 +19,9 @@ def transform_image(img_sample):
|
|
21 |
transforms.Resize((224, 224)), # Resize to 224x224
|
22 |
transforms.ToTensor(), # Convert PIL image to tensor
|
23 |
transforms.ColorJitter(contrast=0.5), # Contrast
|
24 |
-
transforms.RandomAdjustSharpness(sharpness_factor=0.5),
|
25 |
-
transforms.RandomSolarize(threshold=0.75),
|
26 |
-
transforms.RandomAutocontrast(p=1),
|
27 |
])
|
28 |
transformed_img = transform(img_sample)
|
29 |
return transformed_img
|
@@ -40,7 +38,7 @@ def predict(Image):
|
|
40 |
|
41 |
with torch.no_grad():
|
42 |
grade = torch.softmax(model(img.float()), dim=1)[0]
|
43 |
-
category = ["Normal", "Mild", "Moderate", "Severe", "Proliferative"]
|
44 |
output_dict = {}
|
45 |
for cat, value in zip(category, grade):
|
46 |
output_dict[cat] = value.item()
|
|
|
7 |
|
8 |
from torch.utils.mobile_optimizer import optimize_for_mobile
|
9 |
|
10 |
+
model = timm.create_model('resnet50', pretrained=True)
|
11 |
+
model.fc = torch.nn.Linear(in_features=model.fc.in_features, out_features=5)
|
12 |
+
path = "epoch_4_Resnet50-0.5contrast.pth"
|
13 |
+
model.load_state_dict(torch.load(path))
|
|
|
|
|
14 |
|
15 |
model.eval()
|
16 |
|
|
|
19 |
transforms.Resize((224, 224)), # Resize to 224x224
|
20 |
transforms.ToTensor(), # Convert PIL image to tensor
|
21 |
transforms.ColorJitter(contrast=0.5), # Contrast
|
22 |
+
#transforms.RandomAdjustSharpness(sharpness_factor=0.5),
|
23 |
+
#transforms.RandomSolarize(threshold=0.75),
|
24 |
+
#transforms.RandomAutocontrast(p=1),
|
25 |
])
|
26 |
transformed_img = transform(img_sample)
|
27 |
return transformed_img
|
|
|
38 |
|
39 |
with torch.no_grad():
|
40 |
grade = torch.softmax(model(img.float()), dim=1)[0]
|
41 |
+
category = ["0 - Normal", "1 - Mild", "2 - Moderate", "3 - Severe", "4 - Proliferative"]
|
42 |
output_dict = {}
|
43 |
for cat, value in zip(category, grade):
|
44 |
output_dict[cat] = value.item()
|