File size: 6,232 Bytes
628908b
f2b1250
 
 
 
 
 
7025527
 
f2b1250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c19dd
f2b1250
96c3f1b
f2b1250
 
 
 
 
 
5443b1d
f2b1250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c38bf
f2b1250
 
 
 
5443b1d
f2b1250
 
 
 
 
 
 
 
 
5443b1d
f2b1250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704ccbc
f2b1250
4eeccb1
25e7910
 
 
bbeeaee
2e7e616
 
 
 
33bdc2f
 
 
 
 
 
 
 
 
 
 
4eeccb1
7f2a0c1
 
 
faae5b2
 
7f2a0c1
7025527
f2b1250
 
 
 
 
 
 
 
 
 
 
 
 
0bc96cb
f2b1250
33bdc2f
 
 
 
 
f2b1250
a7354ab
5c096b2
 
7025527
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import numpy as np
import nltk
nltk.download('punkt')
from nltk.stem.porter import PorterStemmer
stemmer = PorterStemmer()

def tokenize(sentence):
    return nltk.word_tokenize(sentence)

def stem(word):
    return stemmer.stem(word.lower())

def bag_of_words(tokenized_sentence, words):
    sentence_words = [stem(word) for word in tokenized_sentence]
    bag = np.zeros(len(words), dtype=np.float32)
    for idx, w in enumerate(words):
        if w in sentence_words: 
            bag[idx] = 1
    return bag

###########  2  ###########
import torch
import torch.nn as nn

class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.l1 = nn.Linear(input_size, hidden_size) 
        self.l2 = nn.Linear(hidden_size, hidden_size) 
        self.l3 = nn.Linear(hidden_size, num_classes)
        self.relu = nn.ReLU()
    
    def forward(self, x):
        out = self.l1(x)
        out = self.relu(out)
        out = self.l2(out)
        out = self.relu(out)
        out = self.l3(out)
        return out

###########  3  ###########
import random
import json
from torch.utils.data import Dataset, DataLoader

path = 'intents.json'
with open(path, 'r') as f:
    intents = json.load(f)

all_words = []
tags = []
xy = []

for intent in intents['intents']:
    tag = intent['tag']
    tags.append(tag)
    for pattern in intent['patterns']:
        w = tokenize(pattern)
        all_words.extend(w)
        xy.append((w, tag))

ignore_words = ['(',')','-',':',',',"'s",'!',':',"'","''",'--','.',':','?',';''[',']','``','o','’','“','”','”','[',';']
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))

X_train = []
y_train = []
for (pattern_sentence, tag) in xy:
    bag = bag_of_words(pattern_sentence, all_words)
    X_train.append(bag)
    label = tags.index(tag)
    y_train.append(label)

X_train = np.array(X_train)
y_train = np.array(y_train)

# Hyper-parameters 
num_epochs = 1000
batch_size = 8
learning_rate = 0.001
input_size = len(X_train[0])
hidden_size = 8
output_size = len(tags)

class ChatDataset(Dataset):
    def __init__(self):
        self.n_samples = len(X_train)
        self.x_data = X_train
        self.y_data = y_train

    # support indexing such that dataset[i] can be used to get i-th sample
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # we can call len(dataset) to return the size
    def __len__(self):
        return self.n_samples

#from model import NeuralNet
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True,num_workers=2)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
for epoch in range(num_epochs):
    for (words, labels) in train_loader:
        words = words.to(device)
        labels = labels.to(dtype=torch.long).to(device)
     
        # Forward pass
        outputs = model(words)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

data = {
"model_state": model.state_dict(),
"input_size": input_size,
"hidden_size": hidden_size,
"output_size": output_size,
"all_words": all_words,
"tags": tags
}

FILE = "data.pth"
torch.save(data, FILE)

import random
import string # to process standard python strings

import warnings # Hide the warnings
warnings.filterwarnings('ignore')

import json
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

with open('intents.json', 'r') as json_data:
    intents = json.load(json_data)

FILE = "data.pth"
data = torch.load(FILE, map_location=torch.device('cpu'))

input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]

model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()

bot_name = "WeASK"

from transformers import MBartForConditionalGeneration, MBart50Tokenizer
#model_name = "facebook/mbart-large-50-many-to-many-mmt"
#model = MBartForConditionalGeneration.from_pretrained(model_name)
#tokenizer = MBart50Tokenizer.from_pretrained(model_name)

import re, string, unicodedata
import wikipedia as wk #pip install wikipedia
from collections import defaultdict

def wikipedia_data(user_response):
    reg_ex = re.search('from wikipedia (.*)', user_response)#tell me about 
    try:
        if reg_ex:
            topic = reg_ex.group(1)
            wiki = wk.summary(topic, sentences = 3)
            return wiki
    except Exception as e:
            print("I do not understand...Please rephrase")


def get_response(input_text):
    #model_inputs = tokenizer(input_text, return_tensors="pt")
    #generated_tokens = model.generate(**model_inputs,forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
    #translation= tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    
    #string2=" ".join(map(str,translation ))
    sentence= tokenize(input_text)
    X = bag_of_words(sentence, all_words)
    X = X.reshape(1, X.shape[0])
    X = torch.from_numpy(X).to(device)

    output = model(X)
    _, predicted = torch.max(output, dim=1)

    tag = tags[predicted.item()]

    probs = torch.softmax(output, dim=1)
    prob = probs[0][predicted.item()]
    if prob.item() > 0.75:
        for intent in intents['intents']:
            if tag == intent["tag"]:
                return random.choice(intent['responses'])
    else:
        if "From Wikipedia" in sentence:
            if sentence:
                robo_response = wikipedia_data(user_response)
                return robo_response


title = "WeASK: ChatBOT"
description = "Ask your query here"
chatbot_demo = gr.Interface(fn=get_response, inputs = 'text',outputs='text',title = title, description = description)
chatbot_demo.launch()