ipvikas commited on
Commit
bee2bf3
1 Parent(s): e3365b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -19,12 +19,12 @@ nltk.download('punkt')
19
  from nltk.stem.porter import PorterStemmer
20
  stemmer = PorterStemmer()
21
 
22
- def tokenize(sentence):
23
  """
24
  split sentence into array of words/tokens
25
  a token can be a word or punctuation character, or number
26
  """
27
- return nltk.word_tokenize(sentence)
28
 
29
  # print(tokenize('Hello how are you'))
30
 
@@ -295,8 +295,8 @@ bot_name = "Sam"
295
 
296
 
297
  def get_response(msg):
298
- sentence= tokenize(msg)
299
- X = bag_of_words(sentence, all_words)
300
  X = X.reshape(1, X.shape[0])
301
  X = torch.from_numpy(X).to(device)
302
 
@@ -318,14 +318,16 @@ print("Let's chat! (type 'quit' to exit)")
318
  while True:
319
  # sentence = "do you use credit cards?"
320
  try:
321
- sentence= input("You: ")
 
 
322
  except EOFError as e:
323
  print(end="")
324
- if sentence== "quit":
325
- break
326
 
327
- sentence= tokenize(sentence)
328
- X = bag_of_words(sentence, all_words)
329
  X = X.reshape(1, X.shape[0])
330
  X = torch.from_numpy(X).to(device)
331
 
 
19
  from nltk.stem.porter import PorterStemmer
20
  stemmer = PorterStemmer()
21
 
22
+ def tokenize(input_text):
23
  """
24
  split sentence into array of words/tokens
25
  a token can be a word or punctuation character, or number
26
  """
27
+ return nltk.word_tokenize(input_text)
28
 
29
  # print(tokenize('Hello how are you'))
30
 
 
295
 
296
 
297
  def get_response(msg):
298
+ input_text= tokenize(msg)
299
+ X = bag_of_words(input_text, all_words)
300
  X = X.reshape(1, X.shape[0])
301
  X = torch.from_numpy(X).to(device)
302
 
 
318
  while True:
319
  # sentence = "do you use credit cards?"
320
  try:
321
+ input_text= input("You: ")
322
+ if input_text== "Quit":
323
+ break
324
  except EOFError as e:
325
  print(end="")
326
+ #if sentence== "quit":
327
+ #break
328
 
329
+ input_text= tokenize(input_text)
330
+ X = bag_of_words(input_text, all_words)
331
  X = X.reshape(1, X.shape[0])
332
  X = torch.from_numpy(X).to(device)
333