Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import nltk
|
4 |
+
nltk.download('punkt')
|
5 |
+
from nltk.stem.porter import PorterStemmer
|
6 |
+
stemmer = PorterStemmer()
|
7 |
+
|
8 |
+
def tokenize(sentence):
|
9 |
+
return nltk.word_tokenize(sentence)
|
10 |
+
|
11 |
+
def stem(word):
|
12 |
+
return stemmer.stem(word.lower())
|
13 |
+
|
14 |
+
def bag_of_words(tokenized_sentence, words):
|
15 |
+
sentence_words = [stem(word) for word in tokenized_sentence]
|
16 |
+
bag = np.zeros(len(words), dtype=np.float32)
|
17 |
+
for idx, w in enumerate(words):
|
18 |
+
if w in sentence_words:
|
19 |
+
bag[idx] = 1
|
20 |
+
return bag
|
21 |
+
|
22 |
+
########### 2 ###########
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
class NeuralNet(nn.Module):
|
27 |
+
def __init__(self, input_size, hidden_size, num_classes):
|
28 |
+
super(NeuralNet, self).__init__()
|
29 |
+
self.l1 = nn.Linear(input_size, hidden_size)
|
30 |
+
self.l2 = nn.Linear(hidden_size, hidden_size)
|
31 |
+
self.l3 = nn.Linear(hidden_size, num_classes)
|
32 |
+
self.relu = nn.ReLU()
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
out = self.l1(x)
|
36 |
+
out = self.relu(out)
|
37 |
+
out = self.l2(out)
|
38 |
+
out = self.relu(out)
|
39 |
+
out = self.l3(out)
|
40 |
+
return out
|
41 |
+
|
42 |
+
########### 3 ###########
|
43 |
+
import random
|
44 |
+
import json
|
45 |
+
from torch.utils.data import Dataset, DataLoader
|
46 |
+
|
47 |
+
path = 'intents_tweets.json'
|
48 |
+
with open(path, 'r') as f:
|
49 |
+
intents = json.load(f)
|
50 |
+
|
51 |
+
all_words = []
|
52 |
+
tags = []
|
53 |
+
xy = []
|
54 |
+
|
55 |
+
for intent in intents['intents']:
|
56 |
+
tag = intent['tag']
|
57 |
+
tags.append(tag)
|
58 |
+
for pattern in intent['patterns']:
|
59 |
+
w = tokenize(pattern)
|
60 |
+
all_words.extend(w)
|
61 |
+
xy.append((w, tag))
|
62 |
+
|
63 |
+
ignore_words = ['(',')','-',':',',',"'s",'!',':',"'","''",'--','.',':','?',';''[',']','``','o','β','β','β','β','[',';']
|
64 |
+
all_words = [stem(w) for w in all_words if w not in ignore_words]
|
65 |
+
all_words = sorted(set(all_words))
|
66 |
+
tags = sorted(set(tags))
|
67 |
+
|
68 |
+
X_train = []
|
69 |
+
y_train = []
|
70 |
+
for (pattern_sentence, tag) in xy:
|
71 |
+
bag = bag_of_words(pattern_sentence, all_words)
|
72 |
+
X_train.append(bag)
|
73 |
+
label = tags.index(tag)
|
74 |
+
y_train.append(label)
|
75 |
+
|
76 |
+
X_train = np.array(X_train)
|
77 |
+
y_train = np.array(y_train)
|
78 |
+
|
79 |
+
# Hyper-parameters
|
80 |
+
num_epochs = 1000
|
81 |
+
batch_size = 8
|
82 |
+
learning_rate = 0.001
|
83 |
+
input_size = len(X_train[0])
|
84 |
+
hidden_size = 8
|
85 |
+
output_size = len(tags)
|
86 |
+
|
87 |
+
class ChatDataset(Dataset):
|
88 |
+
def __init__(self):
|
89 |
+
self.n_samples = len(X_train)
|
90 |
+
self.x_data = X_train
|
91 |
+
self.y_data = y_train
|
92 |
+
|
93 |
+
# support indexing such that dataset[i] can be used to get i-th sample
|
94 |
+
def __getitem__(self, index):
|
95 |
+
return self.x_data[index], self.y_data[index]
|
96 |
+
|
97 |
+
# we can call len(dataset) to return the size
|
98 |
+
def __len__(self):
|
99 |
+
return self.n_samples
|
100 |
+
|
101 |
+
#from model import NeuralNet
|
102 |
+
dataset = ChatDataset()
|
103 |
+
train_loader = DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True,num_workers=2)
|
104 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
105 |
+
model = NeuralNet(input_size, hidden_size, output_size).to(device)
|
106 |
+
|
107 |
+
# Loss and optimizer
|
108 |
+
criterion = nn.CrossEntropyLoss()
|
109 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
110 |
+
|
111 |
+
# Train the model
|
112 |
+
for epoch in range(num_epochs):
|
113 |
+
for (words, labels) in train_loader:
|
114 |
+
words = words.to(device)
|
115 |
+
labels = labels.to(dtype=torch.long).to(device)
|
116 |
+
|
117 |
+
# Forward pass
|
118 |
+
outputs = model(words)
|
119 |
+
loss = criterion(outputs, labels)
|
120 |
+
|
121 |
+
# Backward and optimize
|
122 |
+
optimizer.zero_grad()
|
123 |
+
loss.backward()
|
124 |
+
optimizer.step()
|
125 |
+
|
126 |
+
data = {
|
127 |
+
"model_state": model.state_dict(),
|
128 |
+
"input_size": input_size,
|
129 |
+
"hidden_size": hidden_size,
|
130 |
+
"output_size": output_size,
|
131 |
+
"all_words": all_words,
|
132 |
+
"tags": tags
|
133 |
+
}
|
134 |
+
|
135 |
+
FILE = "data.pth"
|
136 |
+
torch.save(data, FILE)
|
137 |
+
|
138 |
+
import random
|
139 |
+
import string # to process standard python strings
|
140 |
+
|
141 |
+
import warnings # Hide the warnings
|
142 |
+
warnings.filterwarnings('ignore')
|
143 |
+
|
144 |
+
import json
|
145 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
146 |
+
|
147 |
+
with open('intents_tweets.json', 'r') as json_data:
|
148 |
+
intents = json.load(json_data)
|
149 |
+
|
150 |
+
FILE = "data.pth"
|
151 |
+
data = torch.load(FILE, map_location=torch.device('cpu'))
|
152 |
+
|
153 |
+
input_size = data["input_size"]
|
154 |
+
hidden_size = data["hidden_size"]
|
155 |
+
output_size = data["output_size"]
|
156 |
+
all_words = data['all_words']
|
157 |
+
tags = data['tags']
|
158 |
+
model_state = data["model_state"]
|
159 |
+
|
160 |
+
model = NeuralNet(input_size, hidden_size, output_size).to(device)
|
161 |
+
model.load_state_dict(model_state)
|
162 |
+
model.eval()
|
163 |
+
|
164 |
+
bot_name = "WeASK"
|
165 |
+
|
166 |
+
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
167 |
+
#model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
168 |
+
#model = MBartForConditionalGeneration.from_pretrained(model_name)
|
169 |
+
#tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
170 |
+
|
171 |
+
import re, string, unicodedata
|
172 |
+
# import wikipedia as wk #pip install wikipedia
|
173 |
+
from collections import defaultdict
|
174 |
+
|
175 |
+
# def wikipedia_data(input_text):
|
176 |
+
# reg_ex = re.search('from wikipedia (.*)', input_text)#tell me about
|
177 |
+
# try:
|
178 |
+
# if reg_ex:
|
179 |
+
# topic = reg_ex.group(1)
|
180 |
+
# wiki = wk.summary(topic, sentences = 3)
|
181 |
+
# return wiki
|
182 |
+
# else:
|
183 |
+
# print("My apology, Can you please rephrase your query?")
|
184 |
+
# except Exception as e:
|
185 |
+
# print("I do not understand...Please rephrase")
|
186 |
+
|
187 |
+
|
188 |
+
def get_response(input_text):
|
189 |
+
#model_inputs = tokenizer(input_text, return_tensors="pt")
|
190 |
+
#generated_tokens = model.generate(**model_inputs,forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
191 |
+
#translation= tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
192 |
+
|
193 |
+
#string2=" ".join(map(str,translation ))
|
194 |
+
sentence= tokenize(input_text)
|
195 |
+
X = bag_of_words(sentence, all_words)
|
196 |
+
X = X.reshape(1, X.shape[0])
|
197 |
+
X = torch.from_numpy(X).to(device)
|
198 |
+
|
199 |
+
output = model(X)
|
200 |
+
_, predicted = torch.max(output, dim=1)
|
201 |
+
|
202 |
+
tag = tags[predicted.item()]
|
203 |
+
|
204 |
+
probs = torch.softmax(output, dim=1)
|
205 |
+
prob = probs[0][predicted.item()]
|
206 |
+
if prob.item() > 0.75:
|
207 |
+
for intent in intents['intents']:
|
208 |
+
if tag == intent["tag"]:
|
209 |
+
return random.choice(intent['responses'])
|
210 |
+
else:
|
211 |
+
#if "From Wikipedia" in sentence:
|
212 |
+
#if sentence:
|
213 |
+
robo_response = wikipedia_data(input_text)
|
214 |
+
return robo_response
|
215 |
+
|
216 |
+
|
217 |
+
title = "WeASK: ChatBOT"
|
218 |
+
description = "Hi!! enter your query here"
|
219 |
+
# examples = [
|
220 |
+
# ["from wikipedia what is calculus"]
|
221 |
+
|
222 |
+
]
|
223 |
+
|
224 |
+
chatbot_demo = gr.Interface(fn=get_response, inputs = 'text',outputs='text',title = title, description = description, examples = examples)
|
225 |
+
chatbot_demo.launch()
|