# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Z_cMyllUfHf2lYtUtdS1ggVMpLCLg0-j """ import gradio as gr ########### 1 ########### #intents.json --> nltk_utils.py --> model.py --> train.ipynb --> chat.ipynb import numpy as np import nltk nltk.download('punkt') from nltk.stem.porter import PorterStemmer stemmer = PorterStemmer() def tokenize(sentence): """ split sentence into array of words/tokens a token can be a word or punctuation character, or number """ return nltk.word_tokenize(sentence) # print(tokenize('Hello how are you')) def stem(word): """ stemming = find the root form of the word examples: words = ["organize", "organizes", "organizing"] words = [stem(w) for w in words] -> ["organ", "organ", "organ"] """ return stemmer.stem(word.lower()) # print(stem('organize')) def bag_of_words(tokenized_sentence, words): """ return bag of words array: 1 for each known word that exists in the sentence, 0 otherwise example: sentence = ["hello", "how", "are", "you"] words = ["hi", "hello", "I", "you", "bye", "thank", "cool"] bog = [ 0 , 1 , 0 , 1 , 0 , 0 , 0] """ # stem each word sentence_words = [stem(word) for word in tokenized_sentence] # initialize bag with 0 for each word bag = np.zeros(len(words), dtype=np.float32) for idx, w in enumerate(words): if w in sentence_words: bag[idx] = 1 return bag # print(bag_of_words('Hello how are you', 'hi')) ########### 2 ########### import torch import torch.nn as nn class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.l1 = nn.Linear(input_size, hidden_size) self.l2 = nn.Linear(hidden_size, hidden_size) self.l3 = nn.Linear(hidden_size, num_classes) self.relu = nn.ReLU() def forward(self, x): out = self.l1(x) out = self.relu(out) out = self.l2(out) out = self.relu(out) out = self.l3(out) # no activation and no softmax at the end return out ########### 3 ########### import numpy as np import random import json import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader #2. Loading our JSON Data #from google.colab import drive #commented #drive.mount('/content/drive') #commented # Commented out IPython magic to ensure Python compatibility. # %cd '/content/drive/My Drive/Colab Notebooks/NLP/ChatBot/' #path = '/content/drive/My Drive/Colab Notebooks/NLP/ChatBot/intents.json' #!pwd import json path = 'intents.json' with open(path, 'r') as f: intents = json.load(f) # print(intents) # Commented out IPython magic to ensure Python compatibility. # %cd '/content/drive/My Drive/Colab Notebooks/NLP/ChatBot/intents.json' # Commented out IPython magic to ensure Python compatibility. # %pwd #!ls import nltk nltk.download('punkt') #from nltk_utils import bag_of_words, tokenize, stem all_words = [] tags = [] xy = [] # loop through each sentence in our intents patterns for intent in intents['intents']: tag = intent['tag'] # add to tag list tags.append(tag) for pattern in intent['patterns']: # tokenize each word in the sentence w = tokenize(pattern) # add to our words list all_words.extend(w) # add to xy pair xy.append((w, tag)) # stem and lower each word # ignore_words = ['?', '.', '!'] ignore_words = ['(',')','-',':',',',"'s",'!',':',"'","''",'--','.',':','?',';''[',']','``','o','’','“','”','”','[',';'] all_words = [stem(w) for w in all_words if w not in ignore_words] # remove duplicates and sort all_words = sorted(set(all_words)) tags = sorted(set(tags)) #print(len(xy), "patterns") #commented #print(len(tags), "tags:", tags) #commented #print(len(all_words), "unique stemmed words:", all_words) #commented # create training data X_train = [] y_train = [] for (pattern_sentence, tag) in xy: # X: bag of words for each pattern_sentence bag = bag_of_words(pattern_sentence, all_words) X_train.append(bag) # y: PyTorch CrossEntropyLoss needs only class labels, not one-hot label = tags.index(tag) y_train.append(label) X_train = np.array(X_train) y_train = np.array(y_train) # Hyper-parameters num_epochs = 1000 batch_size = 8 learning_rate = 0.001 input_size = len(X_train[0]) hidden_size = 8 output_size = len(tags) #print(input_size, output_size) #commented class ChatDataset(Dataset): def __init__(self): self.n_samples = len(X_train) self.x_data = X_train self.y_data = y_train # support indexing such that dataset[i] can be used to get i-th sample def __getitem__(self, index): return self.x_data[index], self.y_data[index] # we can call len(dataset) to return the size def __len__(self): return self.n_samples import torch import torch.nn as nn #from model import NeuralNet dataset = ChatDataset() train_loader = DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True,num_workers=2) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = NeuralNet(input_size, hidden_size, output_size).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model for epoch in range(num_epochs): for (words, labels) in train_loader: words = words.to(device) labels = labels.to(dtype=torch.long).to(device) # Forward pass outputs = model(words) # if y would be one-hot, we must apply # labels = torch.max(labels, 1)[1] loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() #if (epoch+1) % 100 == 0: #print (f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') #print(f'final loss: {loss.item():.4f}')#commented data = { "model_state": model.state_dict(), "input_size": input_size, "hidden_size": hidden_size, "output_size": output_size, "all_words": all_words, "tags": tags } FILE = "data.pth" torch.save(data, FILE) #print(f'training complete. file saved to {FILE}') #commented import random import string # to process standard python strings import warnings # Hide the warnings warnings.filterwarnings('ignore') import torch import nltk nltk.download('punkt') #from google.colab import drive #commented #drive.mount("/content/drive") #commented # Commented out IPython magic to ensure Python compatibility. # %cd "/content/drive/My Drive/Colab Notebooks/NLP/ChatBot/" # !ls import random import json import torch #from model import NeuralNet #from nltk_utils import bag_of_words, tokenize device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') with open('intents.json', 'r') as json_data: intents = json.load(json_data) FILE = "data.pth" data = torch.load(FILE, map_location=torch.device('cpu')) input_size = data["input_size"] hidden_size = data["hidden_size"] output_size = data["output_size"] all_words = data['all_words'] tags = data['tags'] model_state = data["model_state"] model = NeuralNet(input_size, hidden_size, output_size).to(device) model.load_state_dict(model_state) model.eval() bot_name = "WeASK" ###removed from transformers import MBartForConditionalGeneration, MBart50Tokenizer #def download_model(): #model, tokenizer = download_model() ################################ def download_model(): model_name = "facebook/mbart-large-50-many-to-many-mmt" model = MBartForConditionalGeneration.from_pretrained(model_name) tokenizer = MBart50Tokenizer.from_pretrained(model_name) return model, tokenizer model, tokenizer = download_model() def get_response(input_text): model_inputs = tokenizer(input_text, return_tensors="pt") generated_tokens = model.generate(**model_inputs,forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) translation= tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) #string2=" ".join(map(str,translation )) #print("Let's chat! (type 'quit' to exit)") #while True: # sentence = "do you use credit cards?" #try: #sentence= input("You: ") #if sentence== "Quit": #break #except EOFError as e: #print(end="") #if sentence== "quit": #break sentence= tokenize(translation) X = bag_of_words(sentence, all_words) X = X.reshape(1, X.shape[0]) X = torch.from_numpy(X).to(device) output = model(X) _, predicted = torch.max(output, dim=1) tag = tags[predicted.item()] probs = torch.softmax(output, dim=1) prob = probs[0][predicted.item()] if prob.item() > 0.75: for intent in intents['intents']: if tag == intent["tag"]: return random.choice(intent['responses']) else: return "I do not understand..." #def get_chatbot(sentence): #return classifier(sentence) title = "WeASK: ChatBOT" description = "Ask your query here" chatbot_demo = gr.Interface(fn=get_response, inputs = 'text',outputs='text',title = title, description = description) chatbot_demo.launch()