Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import numpy as np | |
import collections | |
import struct | |
CameraModel = collections.namedtuple( | |
"CameraModel", ["model_id", "model_name", "num_params"]) | |
Camera = collections.namedtuple( | |
"Camera", ["id", "model", "width", "height", "params"]) | |
BaseImage = collections.namedtuple( | |
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]) | |
Point3D = collections.namedtuple( | |
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"]) | |
CAMERA_MODELS = { | |
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3), | |
CameraModel(model_id=1, model_name="PINHOLE", num_params=4), | |
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4), | |
CameraModel(model_id=3, model_name="RADIAL", num_params=5), | |
CameraModel(model_id=4, model_name="OPENCV", num_params=8), | |
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8), | |
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12), | |
CameraModel(model_id=7, model_name="FOV", num_params=5), | |
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4), | |
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5), | |
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12) | |
} | |
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) | |
for camera_model in CAMERA_MODELS]) | |
CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model) | |
for camera_model in CAMERA_MODELS]) | |
def qvec2rotmat(qvec): | |
return np.array([ | |
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, | |
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], | |
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], | |
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], | |
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, | |
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], | |
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], | |
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], | |
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) | |
def rotmat2qvec(R): | |
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat | |
K = np.array([ | |
[Rxx - Ryy - Rzz, 0, 0, 0], | |
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0], | |
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0], | |
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0 | |
eigvals, eigvecs = np.linalg.eigh(K) | |
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)] | |
if qvec[0] < 0: | |
qvec *= -1 | |
return qvec | |
class Image(BaseImage): | |
def qvec2rotmat(self): | |
return qvec2rotmat(self.qvec) | |
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"): | |
"""Read and unpack the next bytes from a binary file. | |
:param fid: | |
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc. | |
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}. | |
:param endian_character: Any of {@, =, <, >, !} | |
:return: Tuple of read and unpacked values. | |
""" | |
data = fid.read(num_bytes) | |
return struct.unpack(endian_character + format_char_sequence, data) | |
def read_points3D_text(path): | |
""" | |
see: src/base/reconstruction.cc | |
void Reconstruction::ReadPoints3DText(const std::string& path) | |
void Reconstruction::WritePoints3DText(const std::string& path) | |
""" | |
xyzs = None | |
rgbs = None | |
errors = None | |
num_points = 0 | |
with open(path, "r") as fid: | |
while True: | |
line = fid.readline() | |
if not line: | |
break | |
line = line.strip() | |
if len(line) > 0 and line[0] != "#": | |
num_points += 1 | |
xyzs = np.empty((num_points, 3)) | |
rgbs = np.empty((num_points, 3)) | |
errors = np.empty((num_points, 1)) | |
count = 0 | |
with open(path, "r") as fid: | |
while True: | |
line = fid.readline() | |
if not line: | |
break | |
line = line.strip() | |
if len(line) > 0 and line[0] != "#": | |
elems = line.split() | |
xyz = np.array(tuple(map(float, elems[1:4]))) | |
rgb = np.array(tuple(map(int, elems[4:7]))) | |
error = np.array(float(elems[7])) | |
xyzs[count] = xyz | |
rgbs[count] = rgb | |
errors[count] = error | |
count += 1 | |
return xyzs, rgbs, errors | |
def read_points3D_binary(path_to_model_file): | |
""" | |
see: src/base/reconstruction.cc | |
void Reconstruction::ReadPoints3DBinary(const std::string& path) | |
void Reconstruction::WritePoints3DBinary(const std::string& path) | |
""" | |
with open(path_to_model_file, "rb") as fid: | |
num_points = read_next_bytes(fid, 8, "Q")[0] | |
xyzs = np.empty((num_points, 3)) | |
rgbs = np.empty((num_points, 3)) | |
errors = np.empty((num_points, 1)) | |
for p_id in range(num_points): | |
binary_point_line_properties = read_next_bytes( | |
fid, num_bytes=43, format_char_sequence="QdddBBBd") | |
xyz = np.array(binary_point_line_properties[1:4]) | |
rgb = np.array(binary_point_line_properties[4:7]) | |
error = np.array(binary_point_line_properties[7]) | |
track_length = read_next_bytes( | |
fid, num_bytes=8, format_char_sequence="Q")[0] | |
track_elems = read_next_bytes( | |
fid, num_bytes=8*track_length, | |
format_char_sequence="ii"*track_length) | |
xyzs[p_id] = xyz | |
rgbs[p_id] = rgb | |
errors[p_id] = error | |
return xyzs, rgbs, errors | |
def read_intrinsics_text(path): | |
""" | |
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py | |
""" | |
cameras = {} | |
with open(path, "r") as fid: | |
while True: | |
line = fid.readline() | |
if not line: | |
break | |
line = line.strip() | |
if len(line) > 0 and line[0] != "#": | |
elems = line.split() | |
camera_id = int(elems[0]) | |
model = elems[1] | |
assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" | |
width = int(elems[2]) | |
height = int(elems[3]) | |
params = np.array(tuple(map(float, elems[4:]))) | |
cameras[camera_id] = Camera(id=camera_id, model=model, | |
width=width, height=height, | |
params=params) | |
return cameras | |
def read_extrinsics_binary(path_to_model_file): | |
""" | |
see: src/base/reconstruction.cc | |
void Reconstruction::ReadImagesBinary(const std::string& path) | |
void Reconstruction::WriteImagesBinary(const std::string& path) | |
""" | |
images = {} | |
with open(path_to_model_file, "rb") as fid: | |
num_reg_images = read_next_bytes(fid, 8, "Q")[0] | |
for _ in range(num_reg_images): | |
binary_image_properties = read_next_bytes( | |
fid, num_bytes=64, format_char_sequence="idddddddi") | |
image_id = binary_image_properties[0] | |
qvec = np.array(binary_image_properties[1:5]) | |
tvec = np.array(binary_image_properties[5:8]) | |
camera_id = binary_image_properties[8] | |
image_name = "" | |
current_char = read_next_bytes(fid, 1, "c")[0] | |
while current_char != b"\x00": # look for the ASCII 0 entry | |
image_name += current_char.decode("utf-8") | |
current_char = read_next_bytes(fid, 1, "c")[0] | |
num_points2D = read_next_bytes(fid, num_bytes=8, | |
format_char_sequence="Q")[0] | |
x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, | |
format_char_sequence="ddq"*num_points2D) | |
xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), | |
tuple(map(float, x_y_id_s[1::3]))]) | |
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) | |
images[image_id] = Image( | |
id=image_id, qvec=qvec, tvec=tvec, | |
camera_id=camera_id, name=image_name, | |
xys=xys, point3D_ids=point3D_ids) | |
return images | |
def read_intrinsics_binary(path_to_model_file): | |
""" | |
see: src/base/reconstruction.cc | |
void Reconstruction::WriteCamerasBinary(const std::string& path) | |
void Reconstruction::ReadCamerasBinary(const std::string& path) | |
""" | |
cameras = {} | |
with open(path_to_model_file, "rb") as fid: | |
num_cameras = read_next_bytes(fid, 8, "Q")[0] | |
for _ in range(num_cameras): | |
camera_properties = read_next_bytes( | |
fid, num_bytes=24, format_char_sequence="iiQQ") | |
camera_id = camera_properties[0] | |
model_id = camera_properties[1] | |
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name | |
width = camera_properties[2] | |
height = camera_properties[3] | |
num_params = CAMERA_MODEL_IDS[model_id].num_params | |
params = read_next_bytes(fid, num_bytes=8*num_params, | |
format_char_sequence="d"*num_params) | |
cameras[camera_id] = Camera(id=camera_id, | |
model=model_name, | |
width=width, | |
height=height, | |
params=np.array(params)) | |
assert len(cameras) == num_cameras | |
return cameras | |
def read_extrinsics_text(path): | |
""" | |
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py | |
""" | |
images = {} | |
with open(path, "r") as fid: | |
while True: | |
line = fid.readline() | |
if not line: | |
break | |
line = line.strip() | |
if len(line) > 0 and line[0] != "#": | |
elems = line.split() | |
image_id = int(elems[0]) | |
qvec = np.array(tuple(map(float, elems[1:5]))) | |
tvec = np.array(tuple(map(float, elems[5:8]))) | |
camera_id = int(elems[8]) | |
image_name = elems[9] | |
elems = fid.readline().split() | |
xys = np.column_stack([tuple(map(float, elems[0::3])), | |
tuple(map(float, elems[1::3]))]) | |
point3D_ids = np.array(tuple(map(int, elems[2::3]))) | |
images[image_id] = Image( | |
id=image_id, qvec=qvec, tvec=tvec, | |
camera_id=camera_id, name=image_name, | |
xys=xys, point3D_ids=point3D_ids) | |
return images | |
def read_colmap_bin_array(path): | |
""" | |
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_dense.py | |
:param path: path to the colmap binary file. | |
:return: nd array with the floating point values in the value | |
""" | |
with open(path, "rb") as fid: | |
width, height, channels = np.genfromtxt(fid, delimiter="&", max_rows=1, | |
usecols=(0, 1, 2), dtype=int) | |
fid.seek(0) | |
num_delimiter = 0 | |
byte = fid.read(1) | |
while True: | |
if byte == b"&": | |
num_delimiter += 1 | |
if num_delimiter >= 3: | |
break | |
byte = fid.read(1) | |
array = np.fromfile(fid, np.float32) | |
array = array.reshape((width, height, channels), order="F") | |
return np.transpose(array, (1, 0, 2)).squeeze() | |