Kryko7 commited on
Commit
144690a
1 Parent(s): 81d98d1

updated requirements

Browse files
Files changed (2) hide show
  1. app.py +34 -3
  2. requirements.txt +4 -4
app.py CHANGED
@@ -6,6 +6,8 @@ from langchain.document_loaders import GutenbergLoader
6
 
7
 
8
  import langchain
 
 
9
 
10
  from langchain.text_splitter import RecursiveCharacterTextSplitter
11
 
@@ -35,6 +37,21 @@ llm = Replicate(
35
  )
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  # Function to search for a book by name and return the best match URL
40
  def search_book_by_name(book_name):
@@ -100,8 +117,7 @@ def create_book_embeddings(book_content):
100
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = Configuration.split_chunk_size,
101
  chunk_overlap = Configuration.split_overlap)
102
  texts = text_splitter.split_documents(book_content)
103
- instructor_embeddings = HuggingFaceInstructEmbeddings(model_name = Configuration.embeddings_model_repo,
104
- model_kwargs = {"device": "cuda"})
105
 
106
  vectordb = None
107
  try:
@@ -173,4 +189,19 @@ def generate_answer_from_embeddings(query, book_embeddings):
173
  llm_response = qa_chain(query)
174
  ans = process_llm_response(llm_response)
175
 
176
- return ans
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
 
8
  import langchain
9
+ from fastapi import FastAPI
10
+
11
 
12
  from langchain.text_splitter import RecursiveCharacterTextSplitter
13
 
 
37
  )
38
 
39
 
40
+ class Configuration:
41
+ model_name = 'llama2-13b'
42
+ temperature = 0.5
43
+ top_p = 0.95
44
+ repetition_penalty = 1.15
45
+
46
+ split_chunk_size = 1000
47
+ split_overlap = 100
48
+
49
+ embeddings_model_repo = 'hkunlp/instructor-large'
50
+
51
+ k = 3
52
+
53
+ Embeddings_path = '/book-vectordb-chroma'
54
+ Persist_directory = './book-vectordb-chroma'
55
 
56
  # Function to search for a book by name and return the best match URL
57
  def search_book_by_name(book_name):
 
117
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = Configuration.split_chunk_size,
118
  chunk_overlap = Configuration.split_overlap)
119
  texts = text_splitter.split_documents(book_content)
120
+
 
121
 
122
  vectordb = None
123
  try:
 
189
  llm_response = qa_chain(query)
190
  ans = process_llm_response(llm_response)
191
 
192
+ return ans
193
+
194
+
195
+
196
+
197
+
198
+ app = FastAPI()
199
+ llm = Replicate(
200
+ model= "replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
201
+ input={"temperature": 0.75, "max_length": 500, "top_p": 1},
202
+ )
203
+
204
+
205
+
206
+ instructor_embeddings = HuggingFaceInstructEmbeddings(model_name = Configuration.embeddings_model_repo,
207
+ model_kwargs = {"device": "cpu"})
requirements.txt CHANGED
@@ -11,9 +11,9 @@ xformers
11
  einops
12
  replicate
13
  beautifulsoup4
14
- fastapi==0.74.*
15
- requests==2.27.*
16
- uvicorn==0.17.*
17
  sentencepiece
18
- torch==1.11.*
19
 
 
11
  einops
12
  replicate
13
  beautifulsoup4
14
+ fastapi
15
+ requests
16
+ uvicorn
17
  sentencepiece
18
+ torch
19