|
from pathlib import Path |
|
|
|
import streamlit as st |
|
|
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import AutoTokenizer |
|
from transformers import TextClassificationPipeline |
|
|
|
|
|
@st.cache_data() |
|
def get_pipe(): |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
"issai/rembert-sentiment-analysis-polarity-classification-kazakh") |
|
tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh") |
|
return TextClassificationPipeline(model=model, tokenizer=tokenizer) |
|
|
|
|
|
st.title('KazSandra') |
|
static_folder = Path(__file__).parent / 'static' |
|
assert static_folder.exists() |
|
|
|
st.write((static_folder / 'description.txt').read_text()) |
|
st.image(str(static_folder / 'kazsandra.jpg')) |
|
|
|
input_text = st.text_area('Input text', placeholder='Provide your text', value='Осы кітап қызық сияқты.') |
|
|
|
pipe = get_pipe() |
|
|
|
if input_text: |
|
out = pipe(input_text)[0] |
|
st.text("Label: {label}\nScore: {score}".format(**out)) |
|
|