lgblkb commited on
Commit
247f8bc
1 Parent(s): 05bae7f

feat: mvp front

Browse files
Files changed (2) hide show
  1. app.py +16 -20
  2. requirements.txt +0 -1
app.py CHANGED
@@ -1,29 +1,25 @@
1
- import os
2
- from pathlib import Path
3
-
4
  import streamlit as st
5
 
6
- x = st.slider('Select a value')
7
- st.write(x, 'squared is', x * x)
8
- # from huggingface_hub import login
9
-
10
- # login(os.getenv('HF_TOKEN'))
11
-
12
- # hub_folder = Path('~/.cache/huggingface/hub')
13
- # for path in hub_folder.walk():
14
- # st.write(path)
15
-
16
  from transformers import AutoModelForSequenceClassification
17
  from transformers import AutoTokenizer
18
  from transformers import TextClassificationPipeline
19
 
20
- model = AutoModelForSequenceClassification.from_pretrained(
21
- "issai/rembert-sentiment-analysis-polarity-classification-kazakh")
22
- tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh")
23
 
24
- pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
 
 
 
 
 
 
25
 
26
- reviews = ["Бұл бейнефильм маған түк ұнамады.", "Осы кітап қызық сияқты."]
 
 
 
 
27
 
28
- for review in reviews:
29
- st.write(pipe(review))
 
 
 
 
 
 
1
  import streamlit as st
2
 
 
 
 
 
 
 
 
 
 
 
3
  from transformers import AutoModelForSequenceClassification
4
  from transformers import AutoTokenizer
5
  from transformers import TextClassificationPipeline
6
 
 
 
 
7
 
8
+ @st.cache_data()
9
+ def get_pipe():
10
+ model = AutoModelForSequenceClassification.from_pretrained(
11
+ "issai/rembert-sentiment-analysis-polarity-classification-kazakh")
12
+ tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh")
13
+ return TextClassificationPipeline(model=model, tokenizer=tokenizer)
14
+
15
 
16
+ pipe = get_pipe()
17
+ st.title('KazSandra@ISSAI')
18
+ st.text('Sentiment Analysis Polarity Classification In Kazakh Language.')
19
+ input_text = st.text_area('Input text', placeholder='Provide your text', value='Осы кітап қызық сияқты.')
20
+ # reviews = ["Бұл бейнефильм маған түк ұнамады.", "Осы кітап қызық сияқты."]
21
 
22
+ # for review in reviews:
23
+ if input_text:
24
+ out = pipe(input_text)[0]
25
+ st.text("Label: {label}\nScore: {score}".format(**out))
requirements.txt CHANGED
@@ -1,5 +1,4 @@
1
  streamlit~=1.37.0
2
- huggingface-hub~=0.24.5
3
  torch==2.4.0
4
  torchvision==0.19.0
5
  torchaudio==2.4.0
 
1
  streamlit~=1.37.0
 
2
  torch==2.4.0
3
  torchvision==0.19.0
4
  torchaudio==2.4.0