|
import base64 |
|
import json |
|
import os |
|
import re |
|
import time |
|
import uuid |
|
from io import BytesIO |
|
from pathlib import Path |
|
import cv2 |
|
|
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
from PIL import Image |
|
from streamlit_drawable_canvas import st_canvas |
|
|
|
|
|
import argparse |
|
import io |
|
import multiprocessing |
|
from typing import Union |
|
|
|
import torch |
|
|
|
try: |
|
torch._C._jit_override_can_fuse_on_cpu(False) |
|
torch._C._jit_override_can_fuse_on_gpu(False) |
|
torch._C._jit_set_texpr_fuser_enabled(False) |
|
torch._C._jit_set_nvfuser_enabled(False) |
|
except: |
|
pass |
|
|
|
from src.helper import ( |
|
download_model, |
|
load_img, |
|
norm_img, |
|
numpy_to_bytes, |
|
pad_img_to_modulo, |
|
resize_max_size, |
|
) |
|
|
|
NUM_THREADS = str(multiprocessing.cpu_count()) |
|
|
|
os.environ["OMP_NUM_THREADS"] = NUM_THREADS |
|
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS |
|
os.environ["MKL_NUM_THREADS"] = NUM_THREADS |
|
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS |
|
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS |
|
if os.environ.get("CACHE_DIR"): |
|
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] |
|
|
|
|
|
|
|
|
|
|
|
from scipy import ndimage as ndi |
|
|
|
SEAM_COLOR = np.array([255, 200, 200]) |
|
SHOULD_DOWNSIZE = True |
|
DOWNSIZE_WIDTH = 500 |
|
ENERGY_MASK_CONST = 100000.0 |
|
MASK_THRESHOLD = 10 |
|
USE_FORWARD_ENERGY = True |
|
|
|
device = torch.device("cpu") |
|
model_path = "./assets/big-lama.pt" |
|
model = torch.jit.load(model_path, map_location="cpu") |
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def visualize(im, boolmask=None, rotate=False): |
|
vis = im.astype(np.uint8) |
|
if boolmask is not None: |
|
vis[np.where(boolmask == False)] = SEAM_COLOR |
|
if rotate: |
|
vis = rotate_image(vis, False) |
|
cv2.imshow("visualization", vis) |
|
cv2.waitKey(1) |
|
return vis |
|
|
|
def resize(image, width): |
|
dim = None |
|
h, w = image.shape[:2] |
|
dim = (width, int(h * width / float(w))) |
|
image = image.astype('float32') |
|
return cv2.resize(image, dim) |
|
|
|
def rotate_image(image, clockwise): |
|
k = 1 if clockwise else 3 |
|
return np.rot90(image, k) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def backward_energy(im): |
|
""" |
|
Simple gradient magnitude energy map. |
|
""" |
|
xgrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=1, mode='wrap') |
|
ygrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=0, mode='wrap') |
|
|
|
grad_mag = np.sqrt(np.sum(xgrad**2, axis=2) + np.sum(ygrad**2, axis=2)) |
|
|
|
|
|
|
|
|
|
return grad_mag |
|
|
|
def forward_energy(im): |
|
""" |
|
Forward energy algorithm as described in "Improved Seam Carving for Video Retargeting" |
|
by Rubinstein, Shamir, Avidan. |
|
Vectorized code adapted from |
|
https://github.com/axu2/improved-seam-carving. |
|
""" |
|
h, w = im.shape[:2] |
|
im = cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_BGR2GRAY).astype(np.float64) |
|
|
|
energy = np.zeros((h, w)) |
|
m = np.zeros((h, w)) |
|
|
|
U = np.roll(im, 1, axis=0) |
|
L = np.roll(im, 1, axis=1) |
|
R = np.roll(im, -1, axis=1) |
|
|
|
cU = np.abs(R - L) |
|
cL = np.abs(U - L) + cU |
|
cR = np.abs(U - R) + cU |
|
|
|
for i in range(1, h): |
|
mU = m[i-1] |
|
mL = np.roll(mU, 1) |
|
mR = np.roll(mU, -1) |
|
|
|
mULR = np.array([mU, mL, mR]) |
|
cULR = np.array([cU[i], cL[i], cR[i]]) |
|
mULR += cULR |
|
|
|
argmins = np.argmin(mULR, axis=0) |
|
m[i] = np.choose(argmins, mULR) |
|
energy[i] = np.choose(argmins, cULR) |
|
|
|
|
|
|
|
|
|
return energy |
|
|
|
|
|
|
|
|
|
|
|
def add_seam(im, seam_idx): |
|
""" |
|
Add a vertical seam to a 3-channel color image at the indices provided |
|
by averaging the pixels values to the left and right of the seam. |
|
Code adapted from https://github.com/vivianhylee/seam-carving. |
|
""" |
|
h, w = im.shape[:2] |
|
output = np.zeros((h, w + 1, 3)) |
|
for row in range(h): |
|
col = seam_idx[row] |
|
for ch in range(3): |
|
if col == 0: |
|
p = np.mean(im[row, col: col + 2, ch]) |
|
output[row, col, ch] = im[row, col, ch] |
|
output[row, col + 1, ch] = p |
|
output[row, col + 1:, ch] = im[row, col:, ch] |
|
else: |
|
p = np.mean(im[row, col - 1: col + 1, ch]) |
|
output[row, : col, ch] = im[row, : col, ch] |
|
output[row, col, ch] = p |
|
output[row, col + 1:, ch] = im[row, col:, ch] |
|
|
|
return output |
|
|
|
def add_seam_grayscale(im, seam_idx): |
|
""" |
|
Add a vertical seam to a grayscale image at the indices provided |
|
by averaging the pixels values to the left and right of the seam. |
|
""" |
|
h, w = im.shape[:2] |
|
output = np.zeros((h, w + 1)) |
|
for row in range(h): |
|
col = seam_idx[row] |
|
if col == 0: |
|
p = np.mean(im[row, col: col + 2]) |
|
output[row, col] = im[row, col] |
|
output[row, col + 1] = p |
|
output[row, col + 1:] = im[row, col:] |
|
else: |
|
p = np.mean(im[row, col - 1: col + 1]) |
|
output[row, : col] = im[row, : col] |
|
output[row, col] = p |
|
output[row, col + 1:] = im[row, col:] |
|
|
|
return output |
|
|
|
def remove_seam(im, boolmask): |
|
h, w = im.shape[:2] |
|
boolmask3c = np.stack([boolmask] * 3, axis=2) |
|
return im[boolmask3c].reshape((h, w - 1, 3)) |
|
|
|
def remove_seam_grayscale(im, boolmask): |
|
h, w = im.shape[:2] |
|
return im[boolmask].reshape((h, w - 1)) |
|
|
|
def get_minimum_seam(im, mask=None, remove_mask=None): |
|
""" |
|
DP algorithm for finding the seam of minimum energy. Code adapted from |
|
https://karthikkaranth.me/blog/implementing-seam-carving-with-python/ |
|
""" |
|
h, w = im.shape[:2] |
|
energyfn = forward_energy if USE_FORWARD_ENERGY else backward_energy |
|
M = energyfn(im) |
|
|
|
if mask is not None: |
|
M[np.where(mask > MASK_THRESHOLD)] = ENERGY_MASK_CONST |
|
|
|
|
|
if remove_mask is not None: |
|
M[np.where(remove_mask > MASK_THRESHOLD)] = -ENERGY_MASK_CONST * 100 |
|
|
|
seam_idx, boolmask = compute_shortest_path(M, im, h, w) |
|
|
|
return np.array(seam_idx), boolmask |
|
|
|
def compute_shortest_path(M, im, h, w): |
|
backtrack = np.zeros_like(M, dtype=np.int_) |
|
|
|
|
|
|
|
for i in range(1, h): |
|
for j in range(0, w): |
|
if j == 0: |
|
idx = np.argmin(M[i - 1, j:j + 2]) |
|
backtrack[i, j] = idx + j |
|
min_energy = M[i-1, idx + j] |
|
else: |
|
idx = np.argmin(M[i - 1, j - 1:j + 2]) |
|
backtrack[i, j] = idx + j - 1 |
|
min_energy = M[i - 1, idx + j - 1] |
|
|
|
M[i, j] += min_energy |
|
|
|
|
|
seam_idx = [] |
|
boolmask = np.ones((h, w), dtype=np.bool_) |
|
j = np.argmin(M[-1]) |
|
for i in range(h-1, -1, -1): |
|
boolmask[i, j] = False |
|
seam_idx.append(j) |
|
j = backtrack[i, j] |
|
|
|
seam_idx.reverse() |
|
return seam_idx, boolmask |
|
|
|
|
|
|
|
|
|
|
|
def seams_removal(im, num_remove, mask=None, vis=False, rot=False): |
|
for _ in range(num_remove): |
|
seam_idx, boolmask = get_minimum_seam(im, mask) |
|
if vis: |
|
visualize(im, boolmask, rotate=rot) |
|
im = remove_seam(im, boolmask) |
|
if mask is not None: |
|
mask = remove_seam_grayscale(mask, boolmask) |
|
return im, mask |
|
|
|
|
|
def seams_insertion(im, num_add, mask=None, vis=False, rot=False): |
|
seams_record = [] |
|
temp_im = im.copy() |
|
temp_mask = mask.copy() if mask is not None else None |
|
|
|
for _ in range(num_add): |
|
seam_idx, boolmask = get_minimum_seam(temp_im, temp_mask) |
|
if vis: |
|
visualize(temp_im, boolmask, rotate=rot) |
|
|
|
seams_record.append(seam_idx) |
|
temp_im = remove_seam(temp_im, boolmask) |
|
if temp_mask is not None: |
|
temp_mask = remove_seam_grayscale(temp_mask, boolmask) |
|
|
|
seams_record.reverse() |
|
|
|
for _ in range(num_add): |
|
seam = seams_record.pop() |
|
im = add_seam(im, seam) |
|
if vis: |
|
visualize(im, rotate=rot) |
|
if mask is not None: |
|
mask = add_seam_grayscale(mask, seam) |
|
|
|
|
|
for remaining_seam in seams_record: |
|
remaining_seam[np.where(remaining_seam >= seam)] += 2 |
|
|
|
return im, mask |
|
|
|
|
|
|
|
|
|
|
|
def seam_carve(im, dy, dx, mask=None, vis=False): |
|
im = im.astype(np.float64) |
|
h, w = im.shape[:2] |
|
assert h + dy > 0 and w + dx > 0 and dy <= h and dx <= w |
|
|
|
if mask is not None: |
|
mask = mask.astype(np.float64) |
|
|
|
output = im |
|
|
|
if dx < 0: |
|
output, mask = seams_removal(output, -dx, mask, vis) |
|
|
|
elif dx > 0: |
|
output, mask = seams_insertion(output, dx, mask, vis) |
|
|
|
if dy < 0: |
|
output = rotate_image(output, True) |
|
if mask is not None: |
|
mask = rotate_image(mask, True) |
|
output, mask = seams_removal(output, -dy, mask, vis, rot=True) |
|
output = rotate_image(output, False) |
|
|
|
elif dy > 0: |
|
output = rotate_image(output, True) |
|
if mask is not None: |
|
mask = rotate_image(mask, True) |
|
output, mask = seams_insertion(output, dy, mask, vis, rot=True) |
|
output = rotate_image(output, False) |
|
|
|
return output |
|
|
|
|
|
def object_removal(im, rmask, mask=None, vis=False, horizontal_removal=False): |
|
im = im.astype(np.float64) |
|
rmask = rmask.astype(np.float64) |
|
if mask is not None: |
|
mask = mask.astype(np.float64) |
|
output = im |
|
|
|
h, w = im.shape[:2] |
|
|
|
if horizontal_removal: |
|
output = rotate_image(output, True) |
|
rmask = rotate_image(rmask, True) |
|
if mask is not None: |
|
mask = rotate_image(mask, True) |
|
|
|
while len(np.where(rmask > MASK_THRESHOLD)[0]) > 0: |
|
seam_idx, boolmask = get_minimum_seam(output, mask, rmask) |
|
if vis: |
|
visualize(output, boolmask, rotate=horizontal_removal) |
|
output = remove_seam(output, boolmask) |
|
rmask = remove_seam_grayscale(rmask, boolmask) |
|
if mask is not None: |
|
mask = remove_seam_grayscale(mask, boolmask) |
|
|
|
num_add = (h if horizontal_removal else w) - output.shape[1] |
|
output, mask = seams_insertion(output, num_add, mask, vis, rot=horizontal_removal) |
|
if horizontal_removal: |
|
output = rotate_image(output, False) |
|
|
|
return output |
|
|
|
|
|
|
|
def s_image(im,mask,vs,hs,mode="resize"): |
|
im = cv2.cvtColor(im, cv2.COLOR_RGBA2RGB) |
|
mask = 255-mask[:,:,3] |
|
h, w = im.shape[:2] |
|
if SHOULD_DOWNSIZE and w > DOWNSIZE_WIDTH: |
|
im = resize(im, width=DOWNSIZE_WIDTH) |
|
if mask is not None: |
|
mask = resize(mask, width=DOWNSIZE_WIDTH) |
|
|
|
|
|
if mode=="resize": |
|
dy = hs |
|
dx = vs |
|
assert dy is not None and dx is not None |
|
output = seam_carve(im, dy, dx, mask, False) |
|
|
|
|
|
|
|
elif mode=="remove": |
|
assert mask is not None |
|
output = object_removal(im, mask, None, False, True) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
def run(image, mask): |
|
""" |
|
image: [C, H, W] |
|
mask: [1, H, W] |
|
return: BGR IMAGE |
|
""" |
|
origin_height, origin_width = image.shape[1:] |
|
image = pad_img_to_modulo(image, mod=8) |
|
mask = pad_img_to_modulo(mask, mod=8) |
|
|
|
mask = (mask > 0) * 1 |
|
image = torch.from_numpy(image).unsqueeze(0).to(device) |
|
mask = torch.from_numpy(mask).unsqueeze(0).to(device) |
|
|
|
start = time.time() |
|
with torch.no_grad(): |
|
inpainted_image = model(image, mask) |
|
|
|
print(f"process time: {(time.time() - start)*1000}ms") |
|
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy() |
|
cur_res = cur_res[0:origin_height, 0:origin_width, :] |
|
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8") |
|
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_BGR2RGB) |
|
return cur_res |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--port", default=8080, type=int) |
|
parser.add_argument("--device", default="cuda", type=str) |
|
parser.add_argument("--debug", action="store_true") |
|
return parser.parse_args() |
|
|
|
|
|
def process_inpaint(image, mask): |
|
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) |
|
original_shape = image.shape |
|
interpolation = cv2.INTER_CUBIC |
|
|
|
|
|
|
|
size_limit = max(image.shape) |
|
|
|
|
|
|
|
print(f"Origin image shape: {original_shape}") |
|
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation) |
|
print(f"Resized image shape: {image.shape}") |
|
image = norm_img(image) |
|
|
|
mask = 255-mask[:,:,3] |
|
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation) |
|
mask = norm_img(mask) |
|
|
|
res_np_img = run(image, mask) |
|
|
|
return cv2.cvtColor(res_np_img, cv2.COLOR_BGR2RGB) |