File size: 6,566 Bytes
cedb0cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a96b6
b4a24a2
 
cedb0cd
 
 
 
 
 
 
b4a24a2
cedb0cd
b4a24a2
cedb0cd
 
b40b5cb
cedb0cd
 
 
 
 
 
 
 
 
b4a24a2
cedb0cd
b4a24a2
b40b5cb
 
 
77a4dd4
b40b5cb
 
 
cedb0cd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import cv2
import gradio as gr
import os
from pathlib import Path
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import tempfile
from zipfile import ZipFile

warnings.filterwarnings("ignore")


# project imports
from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'

    
class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image


transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape


def build_model(hypar,device):
    net = hypar["model"]#GOSNETINC(3,1)

    # convert to half precision
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

    
def predict(net,  inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

  
    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
   
    ds_val = net(inputs_val_v)[0] # list of 6 results

    pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W    # we want the first one which is the most accurate prediction

    ## recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # max = 1

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
    
# Set Parameters
hypar = {} # paramters for inferencing


hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision

##  choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0

hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size

## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation

hypar["model"] = ISNetDIS()

 # Build Model
net = build_model(hypar, device)


def inference(image_path):
  
  image_tensor, orig_size = load_image(image_path, hypar) 
  mask = predict(net, image_tensor, orig_size, hypar, device)
  
  pil_mask = Image.fromarray(mask).convert('L')
  im_rgb = Image.open(image_path).convert("RGB")
  
  im_rgba = im_rgb.copy()
  im_rgba.putalpha(pil_mask)
  file_name = Path(image_path).stem+"_nobg.png"
  file_path = Path(Path(image_path).parent,file_name)
  im_rgba.save(file_path)
  return str(file_path.resolve())

def bw(image_files):
    print(image_files)
    output = []
    for idx, file in enumerate(image_files):
        print(file.name)
        img = Image.open(file.name)
        img = img.convert("L")
        output.append(img)
    print(output)
    return output

def bw_single(image_file):
    img = Image.open(image_file)
    img = img.convert("L")
    return img

def batch(image_files):
    output = []
    for idx, file in enumerate(image_files):
        file = inference(file.name)
        output.append(file)
    
    with ZipFile("tmp.zip", "w") as zipObj:
        for idx, file in enumerate(output):
            zipObj.write(file, file.split("/")[-1])
    return output,"tmp.zip"

with gr.Blocks() as iface:
    gr.Markdown("# Removedor de Fundo💚")
    gr.HTML("Usa <a href='https://github.com/xuebinqin/DIS'>DIS</a> para remover o plano de fundo")
    with gr.Tab("Uma Imagem"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type='filepath')
            with gr.Column():
                image_output = gr.Image(interactive=False)
        with gr.Row():
            with gr.Column():
                single_removebg = gr.Button("Remover Fundo")
            with gr.Column():
                single_clear = gr.Button("Limpar")

    
    with gr.Tab("Lote de Imagens"):
        with gr.Row():
            with gr.Column():
                images = gr.File(file_count="multiple", file_types=["image"])
            with gr.Column():
                gallery = gr.Gallery()
                file_list = gr.Files(interactive=False)

        with gr.Row():
            with gr.Column():
                batch_removebg = gr.Button("Processar Lote")
            with gr.Column():
                batch_clear = gr.Button("Limpar")

    with gr.Tab("Sobre"):
        with gr.Row():
            gr.HTML("Usa Estamos testando esse código usando o <a href='https://github.com/xuebinqin/DIS'>DIS</a> para remover o plano de fundo. Envie sua imagem para que o nosso removedor faça sua parte.")
         
       
                
    #Events
    single_removebg.click(inference, inputs=image, outputs=image_output)
    batch_removebg.click(batch, inputs=images, outputs=[gallery,file_list])
    single_clear.click(lambda: None, None, image, queue=False)
    batch_clear.click(lambda: None, None, images, queue=False)

iface.launch()