Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, pipeline
|
2 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
3 |
+
import torch
|
4 |
+
|
5 |
+
model_id = "MaziyarPanahi/Smaug-72B-v0.1-GPTQ"
|
6 |
+
|
7 |
+
quantize_config = BaseQuantizeConfig(
|
8 |
+
bits=4,
|
9 |
+
group_size=128,
|
10 |
+
desc_act=False
|
11 |
+
)
|
12 |
+
|
13 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
14 |
+
model_id,
|
15 |
+
use_safetensors=True,
|
16 |
+
device="cuda:0",
|
17 |
+
quantize_config=quantize_config)
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
+
|
21 |
+
pipe = pipeline(
|
22 |
+
"text-generation",
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer,
|
25 |
+
max_new_tokens=512,
|
26 |
+
temperature=0.7,
|
27 |
+
top_p=0.95,
|
28 |
+
repetition_penalty=1.1
|
29 |
+
)
|
30 |
+
|
31 |
+
outputs = pipe("What is a large language model?")
|
32 |
+
print(outputs[0]["generated_text"])
|