|
import subprocess
|
|
|
|
subprocess.run(["pip", "install", "gradio==4.31.5"])
|
|
subprocess.run(["pip", "install", "spacy"])
|
|
subprocess.run(["pip", "install", "glirel"])
|
|
subprocess.run(["pip", "install", "scipy==1.10.1"])
|
|
subprocess.run(["pip", "install", "numpy==1.26.4"])
|
|
|
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_md"])
|
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"])
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Union
|
|
import gradio as gr
|
|
from glirel import GLiREL
|
|
import spacy
|
|
|
|
examples = [
|
|
[
|
|
"Amazon, founded by Jeff Bezos, is a leader in e-commerce and cloud computing. The company has also ventured into artificial intelligence and digital streaming.",
|
|
"en_core_web_sm",
|
|
"Founded_By, Located_In, Produces, Operates_In, Works_With, Known_For, Headquartered_In, Partnership_With, Innovates_In, Established_In",
|
|
],
|
|
[
|
|
"J.K. Rowling, the author of the Harry Potter series, has significantly impacted modern literature. Her books have been translated into numerous languages and adapted into successful films.",
|
|
"en_core_web_sm",
|
|
"Translated_Into, Adapted_Into, Born_In, Author_Of, Known_For, Works_With, Located_In, Writes_For, Produced_By, Published_By"
|
|
],
|
|
[
|
|
"Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California.",
|
|
"en_core_web_sm",
|
|
"CO_FOUNDER, HEADQUARTERED_IN, FOUNDED_BY, LOCATED_IN, ESTABLISHED_IN, PARTNERSHIP_WITH, WORKS_WITH, KNOWN_FOR"
|
|
]
|
|
|
|
]
|
|
|
|
|
|
|
|
rel_model = GLiREL.from_pretrained("jackboyla/glirel_beta")
|
|
|
|
|
|
def perform_ner(text, model_name):
|
|
nlp = spacy.load(model_name)
|
|
doc = nlp(text)
|
|
return doc
|
|
|
|
|
|
def extract_relations(tokens, ner, labels):
|
|
relations = rel_model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1)
|
|
sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
|
|
return sorted_data_desc
|
|
|
|
def format_ner(text, ner):
|
|
if isinstance(ner[0], spacy.tokens.Span):
|
|
|
|
ner = [[ent.start_char, ent.end_char, ent.label_, ent.text] for ent in ner]
|
|
return {
|
|
"text": text,
|
|
"entities": [
|
|
{
|
|
"entity": entity[2],
|
|
"word": entity[3],
|
|
"start": entity[0],
|
|
"end": entity[1],
|
|
"score": 0,
|
|
}
|
|
for entity in ner
|
|
],
|
|
}
|
|
|
|
|
|
def process(text, model_name, labels):
|
|
doc = perform_ner(text, model_name)
|
|
tokens = [token.text for token in doc]
|
|
ner = [[ent.start, (ent.end-1), ent.label_, ent.text] for ent in doc.ents]
|
|
labels = labels.split(',')
|
|
relations = extract_relations(tokens, ner, labels)
|
|
print(relations)
|
|
formatted_ner = format_ner(doc.text, doc.ents)
|
|
formatted_rel = ""
|
|
for item in relations:
|
|
formatted_rel += f"{item['head_text']} --> {item['label']} --> {item['tail_text']} \t\t| score: {item['score']}\n"
|
|
return formatted_ner, formatted_rel
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
|
|
gr.Markdown("# 🕵️♀️GLiREL: Zero-Shot Relation Extraction")
|
|
gr.Markdown("GitHub: https://github.com/jackboyla/GLiREL")
|
|
|
|
text_input = gr.Textbox(label="Input Text", value="Jack lives in London but he was born in Mongolia.")
|
|
model_name_input = gr.Dropdown(choices=["en_core_web_sm", "en_core_web_md", "en_core_web_lg"], label="NER Model", value="en_core_web_sm")
|
|
labels_input = gr.Textbox(label="Relation Labels (comma-separated)", value="country of origin, licensed to broadcast to, father, followed by, characters")
|
|
|
|
ner_output = gr.HighlightedText(label="NER")
|
|
rel_output = gr.Textbox(label="Relation Extraction Results")
|
|
|
|
extract_button = gr.Button("Extract Relations")
|
|
extract_button.click(
|
|
fn=process,
|
|
inputs=[text_input, model_name_input, labels_input],
|
|
outputs=[ner_output, rel_output]
|
|
)
|
|
|
|
examples = gr.Examples(
|
|
examples,
|
|
fn=process,
|
|
inputs=[text_input, model_name_input, labels_input],
|
|
outputs=[ner_output, rel_output],
|
|
cache_examples=True,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch(server_port=9989)
|
|
|