jackboyla commited on
Commit
376a51c
1 Parent(s): fe9fc64

Initial commit

Browse files
Files changed (2) hide show
  1. __init__.py +0 -0
  2. app.py +125 -0
__init__.py ADDED
File without changes
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ try:
3
+ import gradio as gr
4
+ import spacy
5
+ import glirel
6
+ except:
7
+ subprocess.run(["pip", "install", "gradio==4.31.5"])
8
+ subprocess.run(["pip", "install", "spacy"])
9
+ subprocess.run(["pip", "install", "glirel"])
10
+ subprocess.run(["pip", "install", "scipy==1.10.1"])
11
+
12
+ try:
13
+ import spacy
14
+ spacy.load("en_core_web_sm")
15
+ except:
16
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
17
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_md"])
18
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"])
19
+
20
+
21
+
22
+
23
+ from typing import Dict, Union
24
+ import gradio as gr
25
+ from glirel import GLiREL
26
+ import spacy
27
+
28
+ examples = [
29
+ [
30
+ "Amazon, founded by Jeff Bezos, is a leader in e-commerce and cloud computing. The company has also ventured into artificial intelligence and digital streaming.",
31
+ "en_core_web_sm",
32
+ "Founded_By, Located_In, Produces, Operates_In, Works_With, Known_For, Headquartered_In, Partnership_With, Innovates_In, Established_In",
33
+ ],
34
+ [
35
+ "J.K. Rowling, the author of the Harry Potter series, has significantly impacted modern literature. Her books have been translated into numerous languages and adapted into successful films.",
36
+ "en_core_web_sm",
37
+ "Translated_Into, Adapted_Into, Born_In, Author_Of, Known_For, Works_With, Located_In, Writes_For, Produced_By, Published_By"
38
+ ],
39
+ [
40
+ "Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California.",
41
+ "en_core_web_sm",
42
+ "CO_FOUNDER, HEADQUARTERED_IN, FOUNDED_BY, LOCATED_IN, ESTABLISHED_IN, PARTNERSHIP_WITH, WORKS_WITH, KNOWN_FOR"
43
+ ]
44
+
45
+ ]
46
+
47
+
48
+ # Load the relation extraction model
49
+ rel_model = GLiREL.from_pretrained("jackboyla/glirel_beta")
50
+
51
+ # Function to perform Named Entity Recognition
52
+ def perform_ner(text, model_name):
53
+ nlp = spacy.load(model_name)
54
+ doc = nlp(text)
55
+ return doc
56
+
57
+ # Function to extract relations
58
+ def extract_relations(tokens, ner, labels):
59
+ relations = rel_model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1)
60
+ sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
61
+ return sorted_data_desc
62
+
63
+ def format_ner(text, ner):
64
+ if isinstance(ner[0], spacy.tokens.Span):
65
+ # if ner is spacy entities; otherwise we assume the format is correct
66
+ ner = [[ent.start_char, ent.end_char, ent.label_, ent.text] for ent in ner]
67
+ return {
68
+ "text": text,
69
+ "entities": [
70
+ {
71
+ "entity": entity[2],
72
+ "word": entity[3],
73
+ "start": entity[0],
74
+ "end": entity[1],
75
+ "score": 0,
76
+ }
77
+ for entity in ner
78
+ ],
79
+ }
80
+
81
+ # Gradio Interface
82
+ def process(text, model_name, labels):
83
+ doc = perform_ner(text, model_name)
84
+ tokens = [token.text for token in doc]
85
+ ner = [[ent.start, (ent.end-1), ent.label_, ent.text] for ent in doc.ents]
86
+ labels = labels.split(',')
87
+ relations = extract_relations(tokens, ner, labels)
88
+ print(relations)
89
+ formatted_ner = format_ner(doc.text, doc.ents)
90
+ formatted_rel = ""
91
+ for item in relations:
92
+ formatted_rel += f"{item['head_text']} --> {item['label']} --> {item['tail_text']} \t\t| score: {item['score']}\n"
93
+ return formatted_ner, formatted_rel
94
+
95
+ # Gradio App Layout
96
+ with gr.Blocks() as demo:
97
+
98
+ gr.Markdown("# 🕵️‍♀️GLiREL: Zero-Shot Relation Extraction")
99
+ gr.Markdown("GitHub: https://github.com/jackboyla/GLiREL")
100
+
101
+ text_input = gr.Textbox(label="Input Text", value="Jack lives in London but he was born in Mongolia.")
102
+ model_name_input = gr.Dropdown(choices=["en_core_web_sm", "en_core_web_md", "en_core_web_lg"], label="NER Model", value="en_core_web_sm")
103
+ labels_input = gr.Textbox(label="Relation Labels (comma-separated)", value="country of origin, licensed to broadcast to, father, followed by, characters")
104
+
105
+ ner_output = gr.HighlightedText(label="NER")
106
+ rel_output = gr.Textbox(label="Relation Extraction Results")
107
+
108
+ extract_button = gr.Button("Extract Relations")
109
+ extract_button.click(
110
+ fn=process,
111
+ inputs=[text_input, model_name_input, labels_input],
112
+ outputs=[ner_output, rel_output]
113
+ )
114
+
115
+ examples = gr.Examples(
116
+ examples,
117
+ fn=process,
118
+ inputs=[text_input, model_name_input, labels_input],
119
+ outputs=[ner_output, rel_output],
120
+ cache_examples=True,
121
+ )
122
+
123
+
124
+ if __name__ == "__main__":
125
+ demo.launch(server_port=9989)