import subprocess subprocess.run(["pip", "install", "gradio==4.31.5"]) subprocess.run(["pip", "install", "spacy"]) subprocess.run(["pip", "install", "glirel"]) subprocess.run(["pip", "install", "scipy==1.10.1"]) subprocess.run(["pip", "install", "numpy==1.26.4"]) subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) subprocess.run(["python", "-m", "spacy", "download", "en_core_web_md"]) subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"]) from typing import Dict, Union import gradio as gr from glirel import GLiREL import spacy examples = [ [ "Amazon, founded by Jeff Bezos, is a leader in e-commerce and cloud computing. The company has also ventured into artificial intelligence and digital streaming.", "en_core_web_sm", "Founded_By, Located_In, Produces, Operates_In, Works_With, Known_For, Headquartered_In, Partnership_With, Innovates_In, Established_In", ], [ "J.K. Rowling, the author of the Harry Potter series, has significantly impacted modern literature. Her books have been translated into numerous languages and adapted into successful films.", "en_core_web_sm", "Translated_Into, Adapted_Into, Born_In, Author_Of, Known_For, Works_With, Located_In, Writes_For, Produced_By, Published_By" ], [ "Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California.", "en_core_web_sm", "CO_FOUNDER, HEADQUARTERED_IN, FOUNDED_BY, LOCATED_IN, ESTABLISHED_IN, PARTNERSHIP_WITH, WORKS_WITH, KNOWN_FOR" ] ] # Load the relation extraction model rel_model = GLiREL.from_pretrained("jackboyla/glirel_beta") # Function to perform Named Entity Recognition def perform_ner(text, model_name): nlp = spacy.load(model_name) doc = nlp(text) return doc # Function to extract relations def extract_relations(tokens, ner, labels): relations = rel_model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1) sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True) return sorted_data_desc def format_ner(text, ner): if isinstance(ner[0], spacy.tokens.Span): # if ner is spacy entities; otherwise we assume the format is correct ner = [[ent.start_char, ent.end_char, ent.label_, ent.text] for ent in ner] return { "text": text, "entities": [ { "entity": entity[2], "word": entity[3], "start": entity[0], "end": entity[1], "score": 0, } for entity in ner ], } # Gradio Interface def process(text, model_name, labels): doc = perform_ner(text, model_name) tokens = [token.text for token in doc] ner = [[ent.start, (ent.end-1), ent.label_, ent.text] for ent in doc.ents] labels = labels.split(',') relations = extract_relations(tokens, ner, labels) print(relations) formatted_ner = format_ner(doc.text, doc.ents) formatted_rel = "" for item in relations: formatted_rel += f"{item['head_text']} --> {item['label']} --> {item['tail_text']} \t\t| score: {item['score']}\n" return formatted_ner, formatted_rel # Gradio App Layout with gr.Blocks() as demo: gr.Markdown("# 🕵️‍♀️GLiREL: Zero-Shot Relation Extraction") gr.Markdown("GitHub: https://github.com/jackboyla/GLiREL") text_input = gr.Textbox(label="Input Text", value="Jack lives in London but he was born in Mongolia.") model_name_input = gr.Dropdown(choices=["en_core_web_sm", "en_core_web_md", "en_core_web_lg"], label="NER Model", value="en_core_web_sm") labels_input = gr.Textbox(label="Relation Labels (comma-separated)", value="country of origin, licensed to broadcast to, father, followed by, characters") ner_output = gr.HighlightedText(label="NER") rel_output = gr.Textbox(label="Relation Extraction Results") extract_button = gr.Button("Extract Relations") extract_button.click( fn=process, inputs=[text_input, model_name_input, labels_input], outputs=[ner_output, rel_output] ) examples = gr.Examples( examples, fn=process, inputs=[text_input, model_name_input, labels_input], outputs=[ner_output, rel_output], cache_examples=True, ) if __name__ == "__main__": demo.launch(server_port=9989)