boltz / app.py
jadechoghari's picture
Update app.py
8b3f260 verified
raw
history blame
5.25 kB
# import os
# import gradio as gr
# from gradio_molecule3d import Molecule3D
# import spaces
# import subprocess
# import glob
# # directory to store cached outputs
# CACHE_DIR = "gradio_cached_examples"
# reps = [
# {
# "model": 0,
# "chain": "",
# "resname": "",
# "style": "stick",
# "color": "whiteCarbon",
# "residue_range": "",
# "around": 0,
# "byres": False,
# "visible": False
# }
# ]
# # Ensure the cache directory exists
# os.makedirs(CACHE_DIR, exist_ok=True)
# # Define example files and precomputed outputs
# example_fasta_files = [
# f"cache_examples/boltz_0.fasta",
# f"cache_examples/Armadillo_6.fasta",
# f"cache_examples/Covid_3.fasta",
# f"cache_examples/Malaria_2.fasta",
# f"cache_examples/MITOCHONDRIAL_9.fasta",
# f"cache_examples/Monkeypox_4.fasta",
# f"cache_examples/Plasmodium_1.fasta",
# f"cache_examples/PROTOCADHERIN_8.fasta",
# f"cache_examples/Vault_5.fasta",
# f"cache_examples/Zipper_7.fasta",
# ]
# # matching `.pdb` files in the `CACHE_DIR`
# example_outputs = [
# os.path.join(CACHE_DIR, os.path.basename(fasta_file).replace(".fasta", ".pdb"))
# for fasta_file in example_fasta_files
# ]
# # must load cached outputs
# def load_cached_example_outputs(fasta_file: str) -> str:
# # Find the corresponding `.pdb` file
# pdb_file = os.path.basename(fasta_file).replace(".fasta", ".pdb")
# cached_pdb_path = os.path.join(CACHE_DIR, pdb_file)
# if os.path.exists(cached_pdb_path):
# return cached_pdb_path
# else:
# raise FileNotFoundError(f"Cached output not found for {pdb_file}")
# # handle example click
# def on_example_click(fasta_file: str) -> str:
# return load_cached_example_outputs(fasta_file)
# # run predictions
# @spaces.GPU(duration=120)
# def predict(data,
# accelerator="gpu", sampling_steps=50,
# diffusion_samples=1):
# print("Arguments passed to `predict` function:")
# print(f" data: {data}")
# print(f" accelerator: {accelerator}")
# print(f" sampling_steps: {sampling_steps}")
# print(f" diffusion_samples: {diffusion_samples}")
# # we construct the base command
# command = [
# "boltz", "predict",
# "--out_dir", "./",
# "--accelerator", accelerator,
# "--sampling_steps", str(sampling_steps),
# "--diffusion_samples", str(diffusion_samples),
# "--output_format", "pdb",
# ]
# command.extend(["--checkpoint", "./ckpt/boltz1.ckpt"])
# command.append(data)
# result = subprocess.run(command, capture_output=True, text=True)
# if result.returncode == 0:
# print("Prediction completed successfully...!")
# print(f"Output saved to: {out_dir}")
# else:
# print("Prediction failed :(")
# print("Error:", result.stderr)
# def run_prediction(input_file, accelerator, sampling_steps,
# diffusion_samples):
# data = input_file.name
# print("the data : ", data)
# predict(
# data=data,
# accelerator=accelerator,
# sampling_steps=sampling_steps,
# diffusion_samples=diffusion_samples
# )
# # search for the latest .pdb file in the predictions folder
# out_dir = "./"
# search_path = os.path.join(out_dir, "boltz_results*/predictions/**/*.pdb")
# pdb_files = glob.glob(search_path, recursive=True)
# if not pdb_files:
# print("No .pdb files found in the predictions folder.")
# return None
# # some manual logic
# # get the latest .pdb file based on modification time
# latest_pdb_file = max(pdb_files, key=os.path.getmtime)
# return latest_pdb_file
# with gr.Blocks() as demo:
# gr.Markdown("# 🔬 Boltz-1: Democratizing Biomolecular Interaction Modeling 🧬")
# with gr.Row():
# with gr.Column(scale=1):
# inp = gr.File(label="Upload a .fasta File", file_types=[".fasta"])
# with gr.Accordion("Advanced Settings", open=False):
# accelerator = gr.Radio(choices=["gpu", "cpu"], value="gpu", label="Accelerator")
# sampling_steps = gr.Slider(minimum=1, maximum=500, value=50, step=1, label="Sampling Steps")
# diffusion_samples = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Diffusion Samples")
# btn = gr.Button("Predict")
# with gr.Column(scale=3):
# out = Molecule3D(label="Generated Molecule", reps=reps)
# btn.click(
# run_prediction,
# inputs=[inp, accelerator, sampling_steps, diffusion_samples],
# outputs=out
# )
# gr.Examples(
# examples=[[fasta_file] for fasta_file in example_fasta_files],
# inputs=[inp],
# outputs=out,
# fn=lambda fasta_file: on_example_click(fasta_file),
# cache_examples=True
# )
# if __name__ == "__main__":
# demo.launch(share=True, debug=True)
import gradio as gr
import spaces
@spaces.GPU()
def greet(name):
return "Hello " + name + "!!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()