robustsam / app.py
jadechoghari's picture
Update app.py
5017de6 verified
raw
history blame
2.56 kB
# no gpu required
from transformers import pipeline, SamModel, SamProcessor
import torch
import numpy as np
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "google/owlv2-base-patch16-ensemble"
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device=device)
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base").to(device)
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
def query(image, texts, threshold):
texts = texts.split(",")
predictions = detector(
image,
candidate_labels=texts,
threshold=threshold
)
result_labels = []
for pred in predictions:
score = pred["score"]
if score > 0.5:
box = pred["box"]
label = pred["label"]
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
inputs = sam_processor(
image,
input_boxes=[[[box]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
mask = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
result_labels.append((mask, label))
return image, result_labels
import gradio as gr
description = (
"Welcome to RobustSAM by Snap Research."
"This Space uses RobustSAM, an enhanced version of the Segment Anything Model (SAM) with improved performance on low-quality images while maintaining zero-shot segmentation capabilities. "
"Thanks to its integration with OWLv2, RobustSAM becomes text-promptable, allowing for flexible and accurate segmentation, even with degraded image quality. Try the example or input an image with comma-separated candidate labels to see the enhanced segmentation results."
)
demo = gr.Interface(
query,
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label = "Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
outputs=gr.AnnotatedImage(label="Segmented Image"),
title="RobustSAM",
description=description,
examples=[
["./blur.jpg", "insect", 0.1],
["./lowlight.jpg", "bus, window", 0.1],
["./rain.jpg", "tree, leafs", 0.1],
["./haze.jpg", "", 0.1],
],
cache_examples=True
)
demo.launch()