File size: 2,099 Bytes
46ff99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
from torch.nn.init import trunc_normal_
from torch.nn.utils import weight_norm


class DINOHead(nn.Module):
    def __init__(
        self,
        in_dim,
        out_dim,
        use_bn=False,
        nlayers=3,
        hidden_dim=2048,
        bottleneck_dim=256,
        mlp_bias=True,
    ):
        super().__init__()
        nlayers = max(nlayers, 1)
        self.mlp = _build_mlp(
            nlayers,
            in_dim,
            bottleneck_dim,
            hidden_dim=hidden_dim,
            use_bn=use_bn,
            bias=mlp_bias,
        )
        self.apply(self._init_weights)
        self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
        self.last_layer.weight_g.data.fill_(1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.mlp(x)
        eps = 1e-6 if x.dtype == torch.float16 else 1e-12
        x = nn.functional.normalize(x, dim=-1, p=2, eps=eps)
        x = self.last_layer(x)
        return x


def _build_mlp(
    nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True
):
    if nlayers == 1:
        return nn.Linear(in_dim, bottleneck_dim, bias=bias)
    else:
        layers = [nn.Linear(in_dim, hidden_dim, bias=bias)]
        if use_bn:
            layers.append(nn.BatchNorm1d(hidden_dim))
        layers.append(nn.GELU())
        for _ in range(nlayers - 2):
            layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias))
            if use_bn:
                layers.append(nn.BatchNorm1d(hidden_dim))
            layers.append(nn.GELU())
        layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias))
        return nn.Sequential(*layers)