Spaces:
Sleeping
Sleeping
jaiganesan
commited on
Commit
•
e4f9f91
1
Parent(s):
97e8bd1
Delete app.py
Browse files
app.py
DELETED
@@ -1,391 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import os.path
|
3 |
-
import serpapi
|
4 |
-
import requests
|
5 |
-
import streamlit as st
|
6 |
-
from typing import List
|
7 |
-
from docx import Document
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
import huggingface_hub as hfh
|
10 |
-
import feedparser
|
11 |
-
from urllib.parse import quote
|
12 |
-
from llama_index.llms.openai import OpenAI
|
13 |
-
from llama_index.core.schema import MetadataMode, NodeWithScore
|
14 |
-
from langchain_community.document_loaders import WebBaseLoader
|
15 |
-
from llama_index.embeddings.openai import OpenAIEmbedding
|
16 |
-
from langchain_community.document_loaders import PyPDFLoader
|
17 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
18 |
-
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
19 |
-
from llama_index.core.query_engine import RetrieverQueryEngine
|
20 |
-
from llama_index.core.query_engine.multistep_query_engine import MultiStepQueryEngine
|
21 |
-
from llama_index.core.indices.query.query_transform.base import StepDecomposeQueryTransform
|
22 |
-
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
23 |
-
from llama_index.core.retrievers import VectorIndexRetriever, KeywordTableSimpleRetriever, BaseRetriever
|
24 |
-
from llama_index.core.postprocessor import MetadataReplacementPostProcessor, SimilarityPostprocessor
|
25 |
-
from llama_index.core import (VectorStoreIndex, SimpleDirectoryReader, ServiceContext, load_index_from_storage,
|
26 |
-
StorageContext, Document, Settings, SimpleKeywordTableIndex,
|
27 |
-
QueryBundle, get_response_synthesizer)
|
28 |
-
|
29 |
-
import warnings
|
30 |
-
warnings.filterwarnings("ignore")
|
31 |
-
def setting_api_key():
|
32 |
-
try:
|
33 |
-
if st.session_state.openai_api_key and st.session_state.serp_api_key:
|
34 |
-
os.environ['OPENAI_API_KEY'] = st.session_state.openai_api_key
|
35 |
-
st.session_state.hf_token = os.getenv("hf_token")
|
36 |
-
hfh.login(token=st.session_state.hf_token)
|
37 |
-
st.session_state.cohere_api_key = os.getenv("cohere_api_key")
|
38 |
-
|
39 |
-
elif not st.session_state.openai_api_key or not st.session_state.serp_api_key:
|
40 |
-
st.warning("Please set the necessary API keys")
|
41 |
-
except Exception as e:
|
42 |
-
st.warning(e)
|
43 |
-
|
44 |
-
|
45 |
-
def setup_llm_embed():
|
46 |
-
template = """<|system|>
|
47 |
-
Mention Clearly Before response " RAG Output"
|
48 |
-
Please check if the following pieces of context has any mention of the keywords provided
|
49 |
-
in the question.Response as much as you could with context you get.
|
50 |
-
you are Question answering system based AI, Machine Learning , Deep Learning , Generative AI, Data
|
51 |
-
science and Data Analytics.if the following pieces of Context does not relate to Question,
|
52 |
-
You must not answer on your own,you don't know the answer.
|
53 |
-
</s>
|
54 |
-
<|user|>
|
55 |
-
Question:{query_str}</s>
|
56 |
-
<|assistant|> """
|
57 |
-
|
58 |
-
llm = OpenAI(model="gpt-3.5-turbo-0125",
|
59 |
-
temperature=0.1,
|
60 |
-
model_kwargs={'trust_remote_code': True},
|
61 |
-
max_tokens=512,
|
62 |
-
system_prompt=template)
|
63 |
-
|
64 |
-
# embed_model = OpenAIEmbedding(model="text-embedding-3-small")
|
65 |
-
# embed_model = OpenAIEmbedding()
|
66 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
|
67 |
-
return llm, embed_model
|
68 |
-
|
69 |
-
|
70 |
-
def semantic_split(embed_model, documents):
|
71 |
-
sentence_node_parser = SemanticSplitterNodeParser(buffer_size=1, breakpoint_percentile_threshold=90,
|
72 |
-
embed_model=embed_model)
|
73 |
-
nodes = sentence_node_parser.get_nodes_from_documents(documents)
|
74 |
-
return nodes
|
75 |
-
|
76 |
-
|
77 |
-
def ctx_vector_func(llm, embed_model, nodes):
|
78 |
-
# Incorporate Embedding Model and LLM - memory
|
79 |
-
ctx_vector = ServiceContext.from_defaults(
|
80 |
-
llm=llm,
|
81 |
-
embed_model=embed_model,
|
82 |
-
node_parser=nodes)
|
83 |
-
return ctx_vector
|
84 |
-
|
85 |
-
|
86 |
-
def saving_vectors(vector_index, keyword_index):
|
87 |
-
vector_index.storage_context.persist(persist_dir="vectors/vector_index/")
|
88 |
-
keyword_index.storage_context.persist(persist_dir="vectors/keyword_index/")
|
89 |
-
|
90 |
-
|
91 |
-
def create_vector_and_keyword_index(nodes, ctx_vector):
|
92 |
-
vector_index = VectorStoreIndex(nodes, service_context=ctx_vector)
|
93 |
-
keyword_index = SimpleKeywordTableIndex(nodes, service_context=ctx_vector)
|
94 |
-
saving_vectors(vector_index, keyword_index)
|
95 |
-
return vector_index, keyword_index
|
96 |
-
|
97 |
-
|
98 |
-
class CustomRetriever(BaseRetriever):
|
99 |
-
def __init__(
|
100 |
-
self,
|
101 |
-
vector_retriever: VectorIndexRetriever,
|
102 |
-
keyword_retriever: KeywordTableSimpleRetriever,
|
103 |
-
mode: str = "AND",
|
104 |
-
) -> None:
|
105 |
-
|
106 |
-
self._vector_retriever = vector_retriever
|
107 |
-
self._keyword_retriever = keyword_retriever
|
108 |
-
if mode not in ("AND", "OR"):
|
109 |
-
raise ValueError("Invalid mode.")
|
110 |
-
self._mode = mode
|
111 |
-
super().__init__()
|
112 |
-
|
113 |
-
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
114 |
-
|
115 |
-
vector_nodes = self._vector_retriever.retrieve(query_bundle)
|
116 |
-
keyword_nodes = self._keyword_retriever.retrieve(query_bundle)
|
117 |
-
|
118 |
-
vector_ids = {n.node.node_id for n in vector_nodes}
|
119 |
-
keyword_ids = {n.node.node_id for n in keyword_nodes}
|
120 |
-
|
121 |
-
combined_dict = {n.node.node_id: n for n in vector_nodes}
|
122 |
-
combined_dict.update({n.node.node_id: n for n in keyword_nodes})
|
123 |
-
|
124 |
-
if self._mode == "AND":
|
125 |
-
retrieve_ids = vector_ids.intersection(keyword_ids)
|
126 |
-
else:
|
127 |
-
retrieve_ids = vector_ids.union(keyword_ids)
|
128 |
-
|
129 |
-
retrieve_nodes = [combined_dict[rid] for rid in retrieve_ids]
|
130 |
-
return retrieve_nodes
|
131 |
-
|
132 |
-
|
133 |
-
def search_arxiv(query, max_results=8):
|
134 |
-
encoded_query = quote(query)
|
135 |
-
base_url = 'http://export.arxiv.org/api/query?'
|
136 |
-
query_url = f'{base_url}search_query={encoded_query}&start=0&max_results={max_results}'
|
137 |
-
feed = feedparser.parse(query_url)
|
138 |
-
papers = []
|
139 |
-
for entry in feed.entries:
|
140 |
-
paper_info = {
|
141 |
-
'Title': entry.title,
|
142 |
-
'URL': entry.link
|
143 |
-
}
|
144 |
-
papers.append(paper_info)
|
145 |
-
return papers
|
146 |
-
|
147 |
-
|
148 |
-
def remove_empty_lines(lines):
|
149 |
-
non_empty_lines = [line for line in lines if line.strip()]
|
150 |
-
return ' '.join(non_empty_lines)
|
151 |
-
|
152 |
-
|
153 |
-
def get_article_and_arxiv_content(query):
|
154 |
-
# Article content
|
155 |
-
serpapi_api_key = st.session_state.serp_api_key
|
156 |
-
search_engine = "google" # bing
|
157 |
-
|
158 |
-
params = {
|
159 |
-
"engine": "google",
|
160 |
-
"gl": "us",
|
161 |
-
"hl": "en",
|
162 |
-
"api_key": serpapi_api_key,
|
163 |
-
"q": query
|
164 |
-
}
|
165 |
-
serpapi_wrapper = serpapi.GoogleSearch(params)
|
166 |
-
search_results = serpapi_wrapper.get_dict()
|
167 |
-
results = []
|
168 |
-
for result_type in ["organic_results", "related_questions"]:
|
169 |
-
if result_type in search_results:
|
170 |
-
for result in search_results[result_type]:
|
171 |
-
if "title" in result and "link" in result:
|
172 |
-
# Extract title and link
|
173 |
-
item = {"title": result["title"], "link": result["link"]}
|
174 |
-
results.append(item)
|
175 |
-
# Store Each article links in List
|
176 |
-
links = [result['link'] for result in results]
|
177 |
-
titles = [result['title'] for result in results]
|
178 |
-
|
179 |
-
contents = []
|
180 |
-
i = 0
|
181 |
-
for link, title in zip(links, titles):
|
182 |
-
|
183 |
-
response = requests.get(link)
|
184 |
-
soup = BeautifulSoup(response.content, "html.parser")
|
185 |
-
content_tags = soup.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6'])
|
186 |
-
document = ""
|
187 |
-
for tag in content_tags:
|
188 |
-
document += tag.text + "\n"
|
189 |
-
|
190 |
-
if not document:
|
191 |
-
loader = WebBaseLoader(link)
|
192 |
-
document_ = loader.load()
|
193 |
-
document = document_[0].page_content
|
194 |
-
i += 1
|
195 |
-
if i == 4:
|
196 |
-
break
|
197 |
-
|
198 |
-
article = remove_empty_lines(document.split('\n')) #
|
199 |
-
contents.append(article)
|
200 |
-
|
201 |
-
base_url = "http://export.arxiv.org/api/query"
|
202 |
-
papers_to_download = search_arxiv(query)
|
203 |
-
|
204 |
-
papers_urls = []
|
205 |
-
|
206 |
-
for paper in papers_to_download:
|
207 |
-
page_url = paper['URL']
|
208 |
-
response = requests.get(page_url)
|
209 |
-
soup = BeautifulSoup(response.content, "html.parser")
|
210 |
-
download_link = soup.find("a", class_="abs-button download-pdf")
|
211 |
-
|
212 |
-
if download_link:
|
213 |
-
|
214 |
-
pdf_url = download_link['href']
|
215 |
-
if not pdf_url.startswith("http"):
|
216 |
-
pdf_url = "https://arxiv.org" + pdf_url
|
217 |
-
papers_urls.append(pdf_url)
|
218 |
-
|
219 |
-
paper_content = []
|
220 |
-
for url_ in papers_urls[:2]:
|
221 |
-
loader = PyPDFLoader(url_)
|
222 |
-
pages = loader.load_and_split()
|
223 |
-
paper_text = ''
|
224 |
-
for page in pages:
|
225 |
-
page_text = remove_empty_lines(page.page_content.split('\n'))
|
226 |
-
paper_text += page_text
|
227 |
-
|
228 |
-
if paper_text:
|
229 |
-
paper_content.append(paper_text)
|
230 |
-
|
231 |
-
return contents + paper_content
|
232 |
-
|
233 |
-
|
234 |
-
def file_nodes_vector():
|
235 |
-
with st.spinner("Generating Vector Index..."):
|
236 |
-
PERSIST_DIR_vector = "vectors/vector_index"
|
237 |
-
PERSIST_DIR_keyword = "vectors/keyword_index"
|
238 |
-
|
239 |
-
if not os.path.exists(PERSIST_DIR_vector):
|
240 |
-
os.makedirs(PERSIST_DIR_vector)
|
241 |
-
|
242 |
-
if not os.path.exists(PERSIST_DIR_keyword):
|
243 |
-
os.makedirs(PERSIST_DIR_keyword)
|
244 |
-
|
245 |
-
try:
|
246 |
-
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR_vector)
|
247 |
-
vector_index = load_index_from_storage(storage_context)
|
248 |
-
storage_context_ = StorageContext.from_defaults(persist_dir=PERSIST_DIR_keyword)
|
249 |
-
keyword_index = load_index_from_storage(storage_context_)
|
250 |
-
|
251 |
-
except FileNotFoundError:
|
252 |
-
documents = SimpleDirectoryReader(input_dir="sample_pdfs/").load_data()
|
253 |
-
|
254 |
-
# LLM and Embedding Model Setup
|
255 |
-
|
256 |
-
llm, embed_model = setup_llm_embed()
|
257 |
-
Settings.llm = llm
|
258 |
-
Settings.embed_model = embed_model
|
259 |
-
|
260 |
-
# Splitting Nodes
|
261 |
-
nodes = semantic_split(embed_model, documents)
|
262 |
-
ctx_vector = ctx_vector_func(llm, embed_model, nodes)
|
263 |
-
|
264 |
-
# Creating Vector index and Keyword Index
|
265 |
-
|
266 |
-
vector_index, keyword_index = create_vector_and_keyword_index(nodes, ctx_vector)
|
267 |
-
return vector_index, keyword_index
|
268 |
-
|
269 |
-
|
270 |
-
def response_generation(query, cohere_api_key, vector_index, keyword_index):
|
271 |
-
cohere_rerank = CohereRerank(api_key=cohere_api_key, top_n=4)
|
272 |
-
postprocessor = SimilarityPostprocessor(similarity_cutoff=0.85) # default 0.80
|
273 |
-
|
274 |
-
sentence_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=8)
|
275 |
-
keyword_retriever = KeywordTableSimpleRetriever(index=keyword_index, similarity_top_k=8)
|
276 |
-
custom_retriever = CustomRetriever(sentence_retriever, keyword_retriever)
|
277 |
-
|
278 |
-
response_synthesizer = get_response_synthesizer()
|
279 |
-
query_engine = RetrieverQueryEngine(retriever=custom_retriever, response_synthesizer=response_synthesizer,
|
280 |
-
node_postprocessors=[
|
281 |
-
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
282 |
-
cohere_rerank, postprocessor])
|
283 |
-
|
284 |
-
# step_decompose_transform = StepDecomposeQueryTransform(llm, verbose=False)
|
285 |
-
# query_engine = MultiStepQueryEngine(query_engine = query_engine, query_transform=step_decompose_transform )
|
286 |
-
|
287 |
-
response = query_engine.query(query)
|
288 |
-
return response
|
289 |
-
|
290 |
-
|
291 |
-
def stream_output(response):
|
292 |
-
st.write("""<h1 style="font-size: 20px;">Output From RAG </h1>""", unsafe_allow_html=True)
|
293 |
-
for char in response:
|
294 |
-
st.text(char)
|
295 |
-
|
296 |
-
|
297 |
-
def func_add_new_article_content(content_):
|
298 |
-
documents = [Document(text=t) for t in content_]
|
299 |
-
# LLM and Embedding Model Setup
|
300 |
-
llm, embed_model = setup_llm_embed()
|
301 |
-
Settings.llm = llm
|
302 |
-
Settings.embed_model = embed_model
|
303 |
-
|
304 |
-
# Splitting Nodes
|
305 |
-
new_nodes = semantic_split(embed_model, documents)
|
306 |
-
ctx_vector = ctx_vector_func(llm, embed_model, new_nodes) # documents - nodes
|
307 |
-
new_vector_index, new_keyword_index = create_vector_and_keyword_index(new_nodes, ctx_vector) # documents - nodes
|
308 |
-
return new_vector_index, new_keyword_index, new_nodes
|
309 |
-
|
310 |
-
|
311 |
-
def updating_vector(new_nodes, vector_index, keyword_index):
|
312 |
-
vector_index.insert_nodes(new_nodes)
|
313 |
-
keyword_index.insert_nodes(new_nodes)
|
314 |
-
saving_vectors(vector_index, keyword_index)
|
315 |
-
|
316 |
-
|
317 |
-
def main():
|
318 |
-
st.write("""<h1 style="font-size: 30px;">GenAI Question-Answer System Utilizing Advanced Retrieval-Augmented
|
319 |
-
Generation (RAG)</h1>""", unsafe_allow_html=True)
|
320 |
-
|
321 |
-
st.markdown("""This application operates on a paid source model and framework to ensure high accuracy and minimize
|
322 |
-
hallucination. Prior to running the application, it's necessary to configure two keys. Learn more about
|
323 |
-
these keys and how to generate them below.""")
|
324 |
-
|
325 |
-
st.write("""<h1 style="font-size: 15px;">Enter your OpenAI API key </h1>""", unsafe_allow_html=True)
|
326 |
-
openai_api_key = st.text_input(placeholder="OpenAI api key ", label=" ", type="password")
|
327 |
-
|
328 |
-
st.write("""<h1 style="font-size: 15px;">Enter your SERP API key </h1>""", unsafe_allow_html=True)
|
329 |
-
serp_api_key = st.text_input(placeholder="Serp api key ", label=" ", type="password")
|
330 |
-
|
331 |
-
set_keys_button = st.button("Set Keys ", type="primary")
|
332 |
-
key_flag = False
|
333 |
-
|
334 |
-
try:
|
335 |
-
if set_keys_button:
|
336 |
-
if openai_api_key and serp_api_key:
|
337 |
-
st.session_state.openai_api_key = openai_api_key
|
338 |
-
st.session_state.serp_api_key = serp_api_key
|
339 |
-
setting_api_key()
|
340 |
-
st.success("Successful 👍")
|
341 |
-
key_flag = True
|
342 |
-
else:
|
343 |
-
st.warning("Please set the necessary API keys")
|
344 |
-
except Exception as e:
|
345 |
-
st.warning(e)
|
346 |
-
|
347 |
-
st.write("""<h1 style="font-size: 15px;">Enter your Question </h1>""", unsafe_allow_html=True)
|
348 |
-
query = st.text_input(placeholder="Query ", label=" ", max_chars=192)
|
349 |
-
|
350 |
-
generate_response_button = st.button("Generate response ", type="primary")
|
351 |
-
|
352 |
-
if generate_response_button and key_flag and str(query):
|
353 |
-
vector_index, keyword_index = file_nodes_vector()
|
354 |
-
response = response_generation(query, st.session_state.cohere_api_key, vector_index, keyword_index)
|
355 |
-
if response in ["Empty Response", "RAG Output"] or not response:
|
356 |
-
with st.spinner("Getting Information from Articles, It will take some time."):
|
357 |
-
content_ = get_article_and_arxiv_content(query)
|
358 |
-
new_vector_index, new_keyword_index, new_nodes = func_add_new_article_content(content_)
|
359 |
-
response = response_generation(query, st.session_state.cohere_api_key, new_vector_index, new_keyword_index)
|
360 |
-
stream_output(response)
|
361 |
-
|
362 |
-
col1, col2 = st.columns([1, 10])
|
363 |
-
thumps_up_button = col1.button("👍")
|
364 |
-
thumps_down_button = col2.button("👎")
|
365 |
-
if thumps_up_button:
|
366 |
-
st.write("Thank you for your positive feedback!")
|
367 |
-
updating_vector(new_nodes, vector_index, keyword_index)
|
368 |
-
if thumps_down_button:
|
369 |
-
st.write("""We're sorry , We will improve it.""")
|
370 |
-
|
371 |
-
elif response:
|
372 |
-
stream_output(response)
|
373 |
-
col1, col2 = st.columns([1, 10])
|
374 |
-
if col1.button("👍"):
|
375 |
-
st.write("Thank you for your positive feedback!")
|
376 |
-
if col2.button("👎"):
|
377 |
-
st.write("We're sorry , We will improve it.")
|
378 |
-
|
379 |
-
elif generate_response_button and not str(query) and not key_flag:
|
380 |
-
st.warning("Please set the necessary API keys and Enter the query")
|
381 |
-
|
382 |
-
elif generate_response_button and str(query) and not key_flag:
|
383 |
-
st.warning("Please set the necessary API keys")
|
384 |
-
|
385 |
-
elif generate_response_button and key_flag and not str(query):
|
386 |
-
st.warning("Please Enter the query !")
|
387 |
-
|
388 |
-
|
389 |
-
if __name__ == "__main__":
|
390 |
-
main()
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|