File size: 4,222 Bytes
b7940d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcdca57
 
b7940d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
from scipy.spatial import distance as dist
from imutils import face_utils
import numpy as np
import imutils
import time
import dlib
import cv2
import matplotlib.pyplot as plt
from keras.preprocessing.image import img_to_array
from keras.models import load_model

def eye_brow_distance(leye, reye):
    global points
    distq = dist.euclidean(leye, reye)
    points.append(int(distq))
    return distq

def emotion_finder(faces, frame):
    global emotion_classifier
    EMOTIONS = ["angry", "disgust", "scared", "happy", "sad", "surprised", "neutral"]
    x, y, w, h = face_utils.rect_to_bb(faces)
    frame = frame[y:y + h, x:x + w]
    roi = cv2.resize(frame, (64, 64))
    roi = roi.astype("float") / 255.0
    roi = img_to_array(roi)
    roi = np.expand_dims(roi, axis=0)
    preds = emotion_classifier.predict(roi)[0]
    emotion_probability = np.max(preds)
    label = EMOTIONS[preds.argmax()]
    return label

def normalize_values(points, disp):
    normalized_value = abs(disp - np.min(points)) / abs(np.max(points) - np.min(points))
    stress_value = np.exp(-(normalized_value))
    return stress_value

def stress(video_path, duration):
    global points, emotion_classifier
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor("Heartandstress/models/data")
    emotion_classifier = load_model("Heartandstress/models/_mini_XCEPTION.102-0.66.hdf5", compile=False)
    
    cap = cv2.VideoCapture(video_path)
    points = []
    stress_labels = []
    start_time = time.time()

    while True:
        current_time = time.time()
        if current_time - start_time >= duration:
            break

        ret, frame = cap.read()
        if not ret:
            break
        
        frame = cv2.flip(frame, 1)
        frame = imutils.resize(frame, width=500, height=500)

        (lBegin, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eyebrow"]
        (rBegin, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eyebrow"]

        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        try:
            detections = detector(gray, 0)
            for detection in detections:
                emotion = emotion_finder(detection, gray)
                shape = predictor(gray, detection)
                shape = face_utils.shape_to_np(shape)

                leyebrow = shape[lBegin:lEnd]
                reyebrow = shape[rBegin:rEnd]

                distq = eye_brow_distance(leyebrow[-1], reyebrow[0])
                stress_value = normalize_values(points, distq)

                # Determine stress label for this frame
                if emotion in ['scared', 'sad', 'angry'] and stress_value >= 0.75:
                    stress_label = 'stressed'
                else:
                    stress_label = 'not stressed'

                # Store stress label in list
                stress_labels.append(stress_label)

        except Exception as e:
            print(f'Error: {e}')

        key = cv2.waitKey(1) & 0xFF
        if key == ord('q'):
            break

    cap.release()

    # Count occurrences of 'stressed' and 'not stressed'
    stressed_count = stress_labels.count('stressed')
    not_stressed_count = stress_labels.count('not stressed')

    # Determine which label occurred more frequently
    if stressed_count > not_stressed_count:
        most_frequent_label = 'stressed'
    else:
        most_frequent_label = 'not stressed'

    return stressed_count, not_stressed_count, most_frequent_label

def main():
    # Argument parsing
    parser = argparse.ArgumentParser(description='Stress Detection from Video')
    parser.add_argument('--video', type=str, required=True, default='output.mp4', help='Path to the input video file')
    parser.add_argument('--duration', type=int, default=30, help='Duration for analysis in seconds')
    args = parser.parse_args()

    # Call the stress function and get the results
    stressed_count, not_stressed_count, most_frequent_label = stress(args.video, args.duration)

    # Display the result
    print(f"Stressed frames: {stressed_count}")
    print(f"Not stressed frames: {not_stressed_count}")
    print(f"Most frequent state: {most_frequent_label}")

if __name__ == '__main__':
    main()