IMGCaption / app.py
jaimin's picture
Update app.py
6651c2a
from PIL import Image
import requests
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
import torch
import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torchvision import transforms as trn
from torch.nn import functional as F
import os
import numpy as np
import cv2
from PIL import Image
def recursion_change_bn(module):
if isinstance(module, torch.nn.BatchNorm2d):
module.track_running_stats = 1
else:
for i, (name, module1) in enumerate(module._modules.items()):
module1 = recursion_change_bn(module1)
return module
def load_labels():
# prepare all the labels
# scene category relevant
file_name_category = 'categories_places365.txt'
classes = list()
with open(file_name_category) as class_file:
for line in class_file:
classes.append(line.strip().split(' ')[0][3:])
classes = tuple(classes)
# indoor and outdoor relevant
file_name_IO = 'IO_places365.txt'
with open(file_name_IO) as f:
lines = f.readlines()
labels_IO = []
for line in lines:
items = line.rstrip().split()
labels_IO.append(int(items[-1]) -1) # 0 is indoor, 1 is outdoor
labels_IO = np.array(labels_IO)
# scene attribute relevant
file_name_attribute = 'labels_sunattribute.txt'
with open(file_name_attribute) as f:
lines = f.readlines()
labels_attribute = [item.rstrip() for item in lines]
file_name_W = 'W_sceneattribute_wideresnet18.npy'
W_attribute = np.load(file_name_W)
return classes, labels_IO, labels_attribute, W_attribute
def hook_feature(module, input, output):
return np.squeeze(output.data.cpu().numpy())
def returnCAM(feature_conv, weight_softmax, class_idx):
# generate the class activation maps upsample to 256x256
size_upsample = (256, 256)
nc, h, w = feature_conv.shape
output_cam = []
for idx in class_idx:
cam = weight_softmax[class_idx].dot(feature_conv.reshape((nc, h*w)))
cam = cam.reshape(h, w)
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
cam_img = np.uint8(255 * cam_img)
output_cam.append(cv2.resize(cam_img, size_upsample))
return output_cam
def returnTF():
# load the image transformer
tf = trn.Compose([
trn.Resize((224,224)),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return tf
def load_model():
# this model has a last conv feature map as 14x14
model_file = 'wideresnet18_places365.pth.tar'
import wideresnet
model = wideresnet.resnet18(num_classes=365)
checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage)
state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()}
model.load_state_dict(state_dict)
# hacky way to deal with the upgraded batchnorm2D and avgpool layers...
for i, (name, module) in enumerate(model._modules.items()):
module = recursion_change_bn(model)
model.avgpool = torch.nn.AvgPool2d(kernel_size=14, stride=1, padding=0)
model.eval()
# hook the feature extractor
features_names = ['layer4','avgpool'] # this is the last conv layer of the resnet
for name in features_names:
model._modules.get(name).register_forward_hook(hook_feature)
return model
# load the labels
classes, labels_IO, labels_attribute, W_attribute = load_labels()
# load the model
features_blobs = []
model = load_model()
# load the transformer
tf = returnTF() # image transformer
# get the softmax weight
params = list(model.parameters())
weight_softmax = params[-2].data.numpy()
weight_softmax[weight_softmax<0] = 0
def predict(img):
#img = Image.open('6.jpg')
input_img = V(tf(img).unsqueeze(0))
logit = model.forward(input_img)
h_x = F.softmax(logit, 1).data.squeeze()
probs, idx = h_x.sort(0, True)
probs = probs.numpy()
idx = idx.numpy()
io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
env_image = []
if io_image < 0.5:
env_image.append('Indoor')
#print('--TYPE OF ENVIRONMENT: indoor')
else:
env_image.append('Outdoor')
#print('--TYPE OF ENVIRONMENT: outdoor')
# output the prediction of scene category
#print('--SCENE CATEGORIES:')
scene_cat=[]
for i in range(0, 5):
scene_cat.append('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))
#print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))
return env_image,scene_cat
git_processor = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
blip_processor = AutoProcessor.from_pretrained("jaimin/Imagecap")
blip_model = BlipForConditionalGeneration.from_pretrained("jaimin/Imagecap")
device = "cuda" if torch.cuda.is_available() else "cpu"
git_model.to(device)
blip_model.to(device)
def generate_caption(processor, model, image, use_float_16=False):
inputs = processor(images=image, return_tensors="pt").to(device)
if use_float_16:
inputs = inputs.to(torch.float16)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_captions(image):
#img = Image.open(image)
caption_git = generate_caption(git_processor, git_model, image)
caption_blip = generate_caption(blip_processor, blip_model, image)
env, scene = predict(image)
return env,scene,caption_git_large_textcaps, caption_blip_large
outputs = [gr.outputs.Textbox(label="Environment"), gr.outputs.Textbox(label="Objects detected"), gr.outputs.Textbox(label="Caption generated by GIT"), gr.outputs.Textbox(label="Caption generated by BLIP")]
title = "Image Cap with Scene"
description = " Image caption with scene"
interface = gr.Interface(fn=generate_captions,
inputs=gr.inputs.Image(type="pil"),
outputs=outputs,
title=title,
description=description,
enable_queue=True)
interface.launch(debug=True)