|
from collections import defaultdict |
|
from typing import Dict, Generator, List, Optional, Tuple |
|
|
|
import cv2 |
|
import numpy as np |
|
import tqdm |
|
from mivolo.model.mi_volo import MiVOLO |
|
from mivolo.model.yolo_detector import Detector |
|
from mivolo.structures import AGE_GENDER_TYPE, PersonAndFaceResult |
|
|
|
|
|
class Predictor: |
|
def __init__(self, config, verbose: bool = False): |
|
self.detector = Detector(config.detector_weights, config.device, verbose=verbose) |
|
self.age_gender_model = MiVOLO( |
|
config.checkpoint, |
|
config.device, |
|
half=True, |
|
use_persons=config.with_persons, |
|
disable_faces=config.disable_faces, |
|
verbose=verbose, |
|
) |
|
self.draw = config.draw |
|
|
|
def recognize(self, image: np.ndarray) -> Tuple[PersonAndFaceResult, Optional[np.ndarray]]: |
|
detected_objects: PersonAndFaceResult = self.detector.predict(image) |
|
self.age_gender_model.predict(image, detected_objects) |
|
|
|
out_im = None |
|
if self.draw: |
|
|
|
out_im = detected_objects.plot() |
|
|
|
return detected_objects, out_im |
|
|
|
def recognize_video(self, source: str) -> Generator: |
|
video_capture = cv2.VideoCapture(source) |
|
if not video_capture.isOpened(): |
|
raise ValueError(f"Failed to open video source {source}") |
|
|
|
detected_objects_history: Dict[int, List[AGE_GENDER_TYPE]] = defaultdict(list) |
|
|
|
total_frames = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
for _ in tqdm.tqdm(range(total_frames)): |
|
ret, frame = video_capture.read() |
|
if not ret: |
|
break |
|
|
|
detected_objects: PersonAndFaceResult = self.detector.track(frame) |
|
self.age_gender_model.predict(frame, detected_objects) |
|
|
|
current_frame_objs = detected_objects.get_results_for_tracking() |
|
cur_persons: Dict[int, AGE_GENDER_TYPE] = current_frame_objs[0] |
|
cur_faces: Dict[int, AGE_GENDER_TYPE] = current_frame_objs[1] |
|
|
|
|
|
for guid, data in cur_persons.items(): |
|
|
|
if None not in data: |
|
detected_objects_history[guid].append(data) |
|
for guid, data in cur_faces.items(): |
|
if None not in data: |
|
detected_objects_history[guid].append(data) |
|
|
|
detected_objects.set_tracked_age_gender(detected_objects_history) |
|
if self.draw: |
|
frame = detected_objects.plot() |
|
yield detected_objects_history, frame |
|
|