jaimin commited on
Commit
5714db8
1 Parent(s): 1f34c1f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ import numpy as np
4
+ from ner import perform_ner
5
+ from intent import perform_intent_classification
6
+
7
+ transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
8
+
9
+ def transcribe(stream, new_chunk):
10
+ transcription = ""
11
+ sentence_buffer = ""
12
+ results = []
13
+ sr, y = new_chunk
14
+ y = y.astype(np.float32)
15
+ y /= np.max(np.abs(y))
16
+
17
+ if stream is not None:
18
+ stream = np.concatenate([stream, y])
19
+ else:
20
+ stream = y
21
+ print(transcriber({"sampling_rate": sr, "raw": stream})["text"])
22
+ transcription=transcriber({"sampling_rate": sr, "raw": stream})["text"]
23
+ # Check for sentence boundaries
24
+ sentence_boundary = "." in transcription or "?" in transcription
25
+
26
+ if sentence_boundary:
27
+ sentence = sentence_buffer + transcription.split(transcription[-1])[0]
28
+ print("Sentence Buffer :",sentence_buffer)
29
+ print("Sentence :",sentence)
30
+ ner_result = perform_ner(sentence)
31
+ intent_result = perform_intent_classification(sentence)
32
+ print("NER Result (sentence):", ner_result)
33
+ print("Intent Result (sentence):", intent_result)
34
+ sentence_buffer = transcription[-1] # Start a new sentence buffer
35
+ transcription = "" # Reset transcription for the new sentence
36
+ return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"], ner_result, intent_result
37
+
38
+ demo = gr.Interface(
39
+ transcribe,["state", gr.Audio(sources=["microphone"], streaming=True),
40
+ ],
41
+ ["state", gr.Text(label="Transcribe"), gr.Text(label="NER"), gr.Text(label="Intent")],
42
+ live=True,
43
+ )
44
+ demo.launch(share=True)