import gradio as gr from transformers import pipeline import numpy as np from ner import perform_ner from intent import perform_intent_classification transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") def transcribe(stream, new_chunk): transcription = "" sentence_buffer = "" results = [] sr, y = new_chunk y = y.astype(np.float32) y /= np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y print(transcriber({"sampling_rate": sr, "raw": stream})["text"]) transcription=transcriber({"sampling_rate": sr, "raw": stream})["text"] # Check for sentence boundaries sentence_boundary = "." in transcription or "?" in transcription # Initialize ner_result and intent_result ner_result = None intent_result = None if sentence_boundary: sentence = sentence_buffer + transcription.split(transcription[-1])[0] print("Sentence Buffer :",sentence_buffer) print("Sentence :",sentence) ner_result = perform_ner(sentence) intent_result = perform_intent_classification(sentence) print("NER Result (sentence):", ner_result) print("Intent Result (sentence):", intent_result) sentence_buffer = transcription[-1] # Start a new sentence buffer transcription = "" # Reset transcription for the new sentence return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"], ner_result, intent_result demo = gr.Interface( transcribe,["state", gr.Audio(sources=["microphone"], streaming=True), ], ["state", gr.Text(label="Transcribe"), gr.Text(label="NER"), gr.Text(label="Intent")], live=True, ) demo.launch(share=True)