import argparse import logging import os import random import cv2 import torch import yt_dlp from mivolo.data.data_reader import InputType, get_all_files, get_input_type from mivolo.predictor import Predictor from timm.utils import setup_default_logging _logger = logging.getLogger("inference") def get_direct_video_url(video_url): ydl_opts = { "format": "bestvideo", "quiet": True, # Suppress terminal output } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(video_url, download=False) if "url" in info_dict: direct_url = info_dict["url"] resolution = (info_dict["width"], info_dict["height"]) fps = info_dict["fps"] yid = info_dict["id"] return direct_url, resolution, fps, yid return None, None, None, None def get_local_video_info(vid_uri): cap = cv2.VideoCapture(vid_uri) if not cap.isOpened(): raise ValueError(f"Failed to open video source {vid_uri}") res = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) fps = cap.get(cv2.CAP_PROP_FPS) return res, fps def get_random_frames(cap, num_frames): total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_indices = random.sample(range(total_frames), num_frames) frames = [] for idx in frame_indices: cap.set(cv2.CAP_PROP_POS_FRAMES, idx) ret, frame = cap.read() if ret: frames.append(frame) return frames def get_parser(): parser = argparse.ArgumentParser(description="PyTorch MiVOLO Inference") parser.add_argument("--input", type=str, default=None, required=True, help="image file or folder with images") parser.add_argument("--output", type=str, default=None, required=True, help="folder for output results") parser.add_argument("--detector-weights", type=str, default=None, required=True, help="Detector weights (YOLOv8).") parser.add_argument("--checkpoint", default="", type=str, required=True, help="path to mivolo checkpoint") parser.add_argument( "--with-persons", action="store_true", default=False, help="If set model will run with persons, if available" ) parser.add_argument( "--disable-faces", action="store_true", default=False, help="If set model will use only persons if available" ) parser.add_argument("--draw", action="store_true", default=False, help="If set, resulted images will be drawn") parser.add_argument("--device", default="cuda", type=str, help="Device (accelerator) to use.") return parser def main(): parser = get_parser() setup_default_logging() args = parser.parse_args() if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True os.makedirs(args.output, exist_ok=True) predictor = Predictor(args, verbose=True) input_type = get_input_type(args.input) if input_type == InputType.Video or input_type == InputType.VideoStream: if "youtube" in args.input: args.input, res, fps, yid = get_direct_video_url(args.input) if not args.input: raise ValueError(f"Failed to get direct video url {args.input}") else: cap = cv2.VideoCapture(args.input) if not cap.isOpened(): raise ValueError(f"Failed to open video source {args.input}") # Extract 4-5 random frames from the video random_frames = get_random_frames(cap, num_frames=5) age_list = [] for frame in random_frames: detected_objects, out_im, age = predictor.recognize(frame) age_list.append(age[0]) if args.draw: bname = os.path.splitext(os.path.basename(args.input))[0] filename = os.path.join(args.output, f"out_{bname}.jpg") cv2.imwrite(filename, out_im) _logger.info(f"Saved result to {filename}") # Calculate and print average age avg_age = sum(age_list) / len(age_list) if age_list else 0 print(f"Age list: {age_list}") print(f"Average age: {avg_age:.2f}") absolute_age = round(abs(avg_age)) # Define the range lower_bound = absolute_age - 2 upper_bound = absolute_age + 2 return absolute_age, lower_bound, upper_bound elif input_type == InputType.Image: image_files = get_all_files(args.input) if os.path.isdir(args.input) else [args.input] for img_p in image_files: img = cv2.imread(img_p) detected_objects, out_im, age = predictor.recognize(img) if args.draw: bname = os.path.splitext(os.path.basename(img_p))[0] filename = os.path.join(args.output, f"out_{bname}.jpg") cv2.imwrite(filename, out_im) _logger.info(f"Saved result to {filename}") if __name__ == "__main__": absolute_age, lower_bound, upper_bound = main() # Output the results in the desired format print(f"Absolute Age: {absolute_age}") print(f"Range: {lower_bound} - {upper_bound}")