Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import numpy as np | |
import torch | |
from repvit_sam import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry | |
from PIL import ImageDraw | |
from utils.tools import box_prompt, format_results, point_prompt | |
from utils.tools_gradio import fast_process | |
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Huge thanks for AN-619. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the pre-trained model | |
sam_checkpoint = "repvit_sam.pt" | |
model_type = "repvit" | |
repvit_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
repvit_sam = repvit_sam.to(device=device) | |
repvit_sam.eval() | |
mask_generator = SamAutomaticMaskGenerator(repvit_sam) | |
predictor = SamPredictor(repvit_sam) | |
# Description | |
title = "<center><strong><font size='8'>RepViT-SAM<font></strong></center>" | |
description_e = """This is a demo of [RepViT-SAM](https://github.com/THU-MIG/RepViT). | |
We will provide box mode soon. | |
Enjoy! | |
""" | |
description_p = """ Instructions for point mode | |
0. Restart by click the Restart button | |
1. Select a point with Add Mask for the foreground (Must) | |
2. Select a point with Remove Area for the background (Optional) | |
3. Click the Start Segmenting. | |
Github [link](https://github.com/THU-MIG/RepViT) | |
""" | |
examples = [ | |
["assets/picture3.jpg"], | |
["assets/picture4.jpg"], | |
["assets/picture6.jpg"], | |
["assets/picture1.jpg"], | |
] | |
default_example = examples[0] | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
def segment_with_points( | |
image, | |
original_image, | |
input_size=1024, | |
better_quality=False, | |
withContours=True, | |
use_retina=True, | |
mask_random_color=True, | |
): | |
global global_points | |
global global_point_label | |
input_size = int(input_size) | |
w, h = image.size | |
scale = input_size / max(w, h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
image = image.resize((new_w, new_h)) | |
scaled_points = np.array( | |
[[int(x * scale) for x in point] for point in global_points] | |
) | |
scaled_point_label = np.array(global_point_label) | |
if scaled_points.size == 0 and scaled_point_label.size == 0: | |
print("No points selected") | |
return image, image | |
nd_image = np.array(original_image.resize((new_w, new_h))) | |
predictor.set_image(nd_image) | |
masks, scores, logits = predictor.predict( | |
point_coords=scaled_points, | |
point_labels=scaled_point_label, | |
multimask_output=False, | |
) | |
results = format_results(masks, scores, logits, 0) | |
annotations, _ = point_prompt( | |
results, scaled_points, scaled_point_label, new_h, new_w | |
) | |
annotations = np.array([annotations]) | |
fig = fast_process( | |
annotations=annotations, | |
image=image, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
bbox=None, | |
use_retina=use_retina, | |
withContours=withContours, | |
) | |
global_points = [] | |
global_point_label = [] | |
# return fig, None | |
return fig, original_image.resize((new_w, new_h)) | |
def get_points_with_draw(image, label, evt: gr.SelectData): | |
global global_points | |
global global_point_label | |
x, y = evt.index[0], evt.index[1] | |
point_radius, point_color = 15 * ((max(image.width, image.height)) / 1024), (255, 255, 0) if label == "Add Mask" else ( | |
255, | |
0, | |
255, | |
) | |
global_points.append([x, y]) | |
global_point_label.append(1 if label == "Add Mask" else 0) | |
# 创建一个可以在图像上绘图的对象 | |
draw = ImageDraw.Draw(image) | |
draw.ellipse( | |
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], | |
fill=point_color, | |
) | |
return image | |
cond_img_e = gr.Image(label="Input", value=default_example[0], type="pil") | |
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type="pil") | |
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type="pil") | |
segm_img_p = gr.Image( | |
label="Segmented Image with points", interactive=False, type="pil" | |
) | |
global_points = [] | |
global_point_label = [] | |
input_size_slider = gr.components.Slider( | |
minimum=512, | |
maximum=1024, | |
value=1024, | |
step=64, | |
label="Input_size", | |
info="Our model was trained on a size of 1024", | |
) | |
with gr.Blocks(css=css, title="RepViT-SAM") as demo: | |
from PIL import Image | |
original_image = gr.State(value=Image.open(default_example[0]).convert('RGB')) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Title | |
gr.Markdown(title) | |
with gr.Tab("Point mode"): | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img_p.render() | |
with gr.Column(scale=1): | |
segm_img_p.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
add_or_remove = gr.Radio( | |
["Add Mask", "Remove Area"], | |
value="Add Mask", | |
) | |
with gr.Column(): | |
segment_btn_p = gr.Button( | |
"Start segmenting!", variant="primary" | |
) | |
clear_btn_p = gr.Button("Restart", variant="secondary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[cond_img_p], | |
fn=lambda x: x, | |
outputs=[original_image], | |
# fn=segment_with_points, | |
# cache_examples=True, | |
examples_per_page=4, | |
run_on_click=True | |
) | |
with gr.Column(): | |
# Description | |
gr.Markdown(description_p) | |
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) | |
cond_img_p.upload(lambda x: x, inputs=[cond_img_p], outputs=[original_image]) | |
# segment_btn_e.click( | |
# segment_everything, | |
# inputs=[ | |
# cond_img_e, | |
# input_size_slider, | |
# mor_check, | |
# contour_check, | |
# retina_check, | |
# ], | |
# outputs=segm_img_e, | |
# ) | |
segment_btn_p.click( | |
segment_with_points, inputs=[cond_img_p, original_image], outputs=[segm_img_p, cond_img_p] | |
) | |
def clear(): | |
return None, None | |
def clear_text(): | |
return None, None, None | |
# clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e]) | |
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) | |
demo.queue() | |
demo.launch() | |