januarevan commited on
Commit
5481095
0 Parent(s):
Files changed (4) hide show
  1. Dockerfile +28 -0
  2. app.py +118 -0
  3. milvus_singleton.py +22 -0
  4. requirements.txt +10 -0
Dockerfile ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10.8
2
+
3
+ WORKDIR /app
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ RUN mkdir -p /app/cache && chmod -R 777 /app/cache
10
+ RUN mkdir -p /app/milvus_data && chmod -R 777 /app/milvus_data
11
+
12
+
13
+ RUN useradd -m -u 1000 user
14
+ USER user
15
+ ENV HOME=/home/user \
16
+ PATH=/home/user/.local/bin:$PATH
17
+ ENV HF_HOME=/app/cache
18
+ ENV HF_MODULES_CACHE=/app/cache/hf_modules
19
+ ENV MILVUS_DATA_DIR=/app/milvus_data
20
+ ENV HF_WORKER_COUNT=1
21
+
22
+ WORKDIR $HOME/app
23
+
24
+ COPY --chown=user . $HOME/app
25
+
26
+ COPY . .
27
+
28
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Form, Depends, Request, File, UploadFile
2
+ from fastapi.encoders import jsonable_encoder
3
+ from fastapi.responses import JSONResponse
4
+ from fastapi.middleware.cors import CORSMiddleware
5
+ import os
6
+
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from pymilvus import MilvusClient, db, utility, Collection, CollectionSchema, FieldSchema, DataType
9
+ from sentence_transformers import SentenceTransformer
10
+ import torch
11
+ from .milvus_singleton import MilvusClientSingleton
12
+
13
+
14
+ os.environ['HF_HOME'] = '/app/cache'
15
+ os.environ['HF_MODULES_CACHE'] = '/app/cache/hf_modules'
16
+ embedding_model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5',
17
+ trust_remote_code=True,
18
+ device='cuda' if torch.cuda.is_available() else 'cpu',
19
+ cache_folder='/app/cache'
20
+ )
21
+ collection_name="rag"
22
+
23
+ def setup_milvus():
24
+ global milvus_client
25
+ milvus_client = MilvusClientSingleton.get_instance(uri="/app/milvus_data/milvus_demo.db")
26
+
27
+ def document_to_embeddings(content:str) -> list:
28
+ return embedding_model.encode(content, show_progress_bar=True)
29
+
30
+ setup_milvus()
31
+
32
+ app = FastAPI()
33
+
34
+ app.add_middleware(
35
+ CORSMiddleware,
36
+ allow_origins=["*"], # Replace with the list of allowed origins for production
37
+ allow_credentials=True,
38
+ allow_methods=["*"],
39
+ allow_headers=["*"],
40
+ )
41
+
42
+ def split_documents(document_data):
43
+ splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=10)
44
+ return splitter.split_documents(document_data)
45
+
46
+ def create_a_collection(milvus_client, collection_name):
47
+ content = FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=4096)
48
+ vector = FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024)
49
+
50
+ schema = CollectionSchema([
51
+ content, vector
52
+ ])
53
+
54
+ vector_index = {
55
+ "index_type": "IVF_FLAT",
56
+ "metric_type": "COSINE",
57
+ "params": {
58
+ "nlist": 128
59
+ }
60
+ }
61
+
62
+ milvus_client.create_collection(
63
+ collection_name=collection_name,
64
+ schema=schema,
65
+ index_params=vector_index,
66
+ )
67
+
68
+ @app.get("/")
69
+ async def root():
70
+ return {"message": "Hello World"}
71
+
72
+ @app.post("/insert")
73
+ async def insert(file: UploadFile = File(...)):
74
+ contents = await file.read()
75
+
76
+ if not milvus_client.has_collection(collection_name):
77
+ create_a_collection(milvus_client, collection_name)
78
+
79
+ splitted_document_data = split_documents(contents)
80
+
81
+ data_objects = []
82
+ for doc in splitted_document_data:
83
+ data = {
84
+ "vector": document_to_embeddings(doc.page_content),
85
+ "content": doc.page_content,
86
+ }
87
+ data_objects.append(data)
88
+
89
+ try:
90
+ milvus_client.insert(collection_name=collection_name, data=data_objects)
91
+
92
+ except Exception as e:
93
+ raise JSONResponse(status_code=500, content={"error": str(e)})
94
+ else:
95
+ return JSONResponse(status_code=200, content={"result": 'good'})
96
+
97
+ @app.post("/rag")
98
+ async def insert(question):
99
+ if not question:
100
+ return JSONResponse(status_code=400, content={"message": "Please a question!"})
101
+
102
+ try:
103
+ search_res = milvus_client.search(
104
+ collection_name=collection_name,
105
+ data=[
106
+ document_to_embeddings(question)
107
+ ],
108
+ limit=5, # Return top 3 results
109
+ search_params={"metric_type": "COSINE"}, # Inner product distance
110
+ output_fields=["content"], # Return the text field
111
+ )
112
+
113
+ retrieved_lines_with_distances = [
114
+ (res["entity"]["content"]) for res in search_res[0]
115
+ ]
116
+ return JSONResponse(status_code=200, content={"result": retrieved_lines_with_distances[0]})
117
+ except Exception as e:
118
+ return JSONResponse(status_code=400, content={"error": str(e)})
milvus_singleton.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pymilvus import connections
2
+ from pymilvus.exceptions import ConnectionConfigException
3
+
4
+ class MilvusClientSingleton:
5
+ _instance = None
6
+
7
+ @staticmethod
8
+ def get_instance(uri):
9
+ if MilvusClientSingleton._instance is None:
10
+ MilvusClientSingleton()
11
+ # Initialize the client here
12
+ try:
13
+ MilvusClientSingleton._instance = connections.connect(uri=uri)
14
+ except ConnectionConfigException as e:
15
+ print(f"Error connecting to Milvus: {e}")
16
+ # Handle error appropriately
17
+ return MilvusClientSingleton._instance
18
+
19
+ def __init__(self):
20
+ if MilvusClientSingleton._instance is not None:
21
+ raise Exception("This class is a singleton!")
22
+ self._instance = None
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ pymilvus==2.4.5
2
+ sentence-transformers==3.0.1
3
+ huggingface-hub==0.24.5
4
+ langchain_community==0.2.12
5
+ langchain-text-splitters==0.2.2
6
+ langchain==0.2.14
7
+ pypdf==4.3.1
8
+ tqdm==4.66.5
9
+ flask
10
+ flask_cors