from io import BytesIO from fastapi import FastAPI, Form, Depends, Request, File, UploadFile from fastapi.encoders import jsonable_encoder from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import os import pypdf from uuid import uuid4 from langchain.text_splitter import RecursiveCharacterTextSplitter from pymilvus import MilvusClient, db, utility, Collection, CollectionSchema, FieldSchema, DataType from sentence_transformers import SentenceTransformer import torch from milvus_singleton import MilvusClientSingleton os.environ['HF_HOME'] = '/app/cache' os.environ['HF_MODULES_CACHE'] = '/app/cache/hf_modules' embedding_model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True, device='cuda' if torch.cuda.is_available() else 'cpu', cache_folder='/app/cache' ) collection_name="rag" # milvus_client = MilvusClientSingleton.get_instance(uri="/app/milvus_data/milvus_demo.db") milvus_client = MilvusClient(uri="/app/milvus_data/milvus_demo.db") def document_to_embeddings(content:str) -> list: return embedding_model.encode(content, show_progress_bar=True) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # Replace with the list of allowed origins for production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def split_documents(document_data): splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=10) return splitter.split_text(document_data) def create_a_collection(milvus_client, collection_name): # Define the fields for the collection id_field = FieldSchema(name="id", dtype=DataType.VARCHAR, max_length=40, is_primary=True) content_field = FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=4096) vector_field = FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024) # Define the schema for the collection schema = CollectionSchema(fields=[id_field, content_field, vector_field]) # Create the collection milvus_client.create_collection( collection_name=collection_name, schema=schema ) collection = Collection(name=collection_name, milvus_client=milvus_client) # Create an index for the collection # IVF_FLAT index is used here, with metric_type COSINE index_params = { "index_type": "IVF_FLAT", "metric_type": "COSINE", "params": { "nlist": 128 } } # Create the index on the vector field collection.create_index( collection_name=collection_name, field_name="vector", index_params=index_params # Pass the dictionary, not a string ) @app.get("/") async def root(): return {"message": "Hello World"} @app.post("/insert") async def insert(file: UploadFile = File(...)): contents = await file.read() if not milvus_client.has_collection(collection_name): create_a_collection(milvus_client, collection_name) contents = pypdf.PdfReader(BytesIO(contents)) extracted_text = "" for page_num in range(len(contents.pages)): page = contents.pages[page_num] extracted_text += page.extract_text() splitted_document_data = split_documents(extracted_text) print(splitted_document_data) data_objects = [] for doc in splitted_document_data: data = { "id": str(uuid4()), "vector": document_to_embeddings(doc), "content": doc, } data_objects.append(data) print(data_objects) try: milvus_client.insert(collection_name=collection_name, data=data_objects) except Exception as e: raise JSONResponse(status_code=500, content={"error": str(e)}) else: return JSONResponse(status_code=200, content={"result": 'good'}) class RAGRequest(BaseModel): question: str @app.post("/rag") async def rag(request: RAGRequest): question = request.question if not question: return JSONResponse(status_code=400, content={"message": "Please a question!"}) try: search_res = milvus_client.search( collection_name=collection_name, data=[ document_to_embeddings(question) ], limit=5, # Return top 3 results # search_params={"metric_type": "COSINE"}, # Inner product distance output_fields=["content"], # Return the text field ) retrieved_lines_with_distances = [ (res["entity"]["content"]) for res in search_res[0] ] return JSONResponse(status_code=200, content={"result": retrieved_lines_with_distances[0]}) except Exception as e: return JSONResponse(status_code=400, content={"error": str(e)})