Spaces:
Runtime error
Runtime error
jarguello76
commited on
Commit
•
c2f5666
1
Parent(s):
aab4a20
Update app.py
Browse files
app.py
CHANGED
@@ -9,20 +9,20 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es")
|
16 |
|
17 |
model = SpeechT5ForTextToSpeech.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es")
|
16 |
|
17 |
model = SpeechT5ForTextToSpeech.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es").to(device)
|
18 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|