jarguello76 commited on
Commit
c2f5666
1 Parent(s): aab4a20

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -9,20 +9,20 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="jarguello76/whisper-tiny-dv", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es")
16
 
17
  model = SpeechT5ForTextToSpeech.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es")
16
 
17
  model = SpeechT5ForTextToSpeech.from_pretrained("jarguello76/text-to-speech-speecht5_finetuned_voxpopuli_es").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"})
26
  return outputs["text"]
27
 
28