File size: 2,844 Bytes
4616152 a86eb22 4616152 5f44a6e 4616152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import os
import logging
import streamlit as st
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain_huggingface import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Configure logging
logging.basicConfig(level=logging.DEBUG)
def load_vector_store():
# Directory to load the vector data
persist_directory = "./chroma_db"
if not os.path.exists(persist_directory):
logging.error(f"The directory '{persist_directory}' does not exist. Please run the ingestion script.")
st.error(f"The directory '{persist_directory}' does not exist. Please run the ingestion script.")
return None
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_store = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
return vector_store
def load_llm():
checkpoint = "LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95
)
return HuggingFacePipeline(pipeline=pipe)
def process_answer(question):
try:
vector_store = load_vector_store()
if vector_store is None:
return "Vector store not found. Please run the ingestion script.", {}
llm = load_llm()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(),
return_source_documents=True
)
result = qa.invoke(question)
answer = result['result']
return answer, result
except Exception as e:
logging.error(f"An error occurred while processing the answer: {e}")
st.error(f"An error occurred while processing the answer: {e}")
return "An error occurred while processing your request.", {}
def main():
st.title("Search Your PDF 📚📝")
with st.expander("About the App"):
st.markdown(
"""
This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
"""
)
question = st.text_area("Enter your Question")
if st.button("Ask"):
st.info("Your Question: " + question)
st.info("Your Answer")
try:
answer, metadata = process_answer(question)
st.write(answer)
st.write(metadata)
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
if __name__ == '__main__':
main()
|