Upload 3 files
Browse files- .gitattributes +1 -0
- app.py +59 -0
- docs/Ali_Md_Monsur_Masterthesis.pdf +3 -0
- ingest.py +30 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
docs/Ali_Md_Monsur_Masterthesis.pdf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain.llms import HuggingFacePipeline
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
|
8 |
+
checkpoint = "LaMini-T5-738M"
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_llm():
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
14 |
+
pipe = pipeline(
|
15 |
+
'text2text-generation',
|
16 |
+
model=model,
|
17 |
+
tokenizer=tokenizer,
|
18 |
+
max_length=256,
|
19 |
+
do_sample=True,
|
20 |
+
temperature=0.3,
|
21 |
+
top_p=0.95
|
22 |
+
)
|
23 |
+
return HuggingFacePipeline(pipeline=pipe)
|
24 |
+
|
25 |
+
@st.cache_resource
|
26 |
+
def qa_llm():
|
27 |
+
llm = load_llm()
|
28 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
29 |
+
db = FAISS.load_local("faiss_index", embeddings)
|
30 |
+
retriever = db.as_retriever()
|
31 |
+
qa = RetrievalQA.from_chain_type(
|
32 |
+
llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
33 |
+
return qa
|
34 |
+
|
35 |
+
def process_answer(instruction):
|
36 |
+
qa = qa_llm()
|
37 |
+
generated_text = qa(instruction)
|
38 |
+
answer = generated_text['result']
|
39 |
+
return answer, generated_text
|
40 |
+
|
41 |
+
def main():
|
42 |
+
st.title("Search Your PDF 🐦📄")
|
43 |
+
with st.expander("About the App"):
|
44 |
+
st.markdown(
|
45 |
+
"""
|
46 |
+
This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
|
47 |
+
"""
|
48 |
+
)
|
49 |
+
question = st.text_area("Enter your Question")
|
50 |
+
if st.button("Ask"):
|
51 |
+
st.info("Your Question: " + question)
|
52 |
+
|
53 |
+
st.info("Your Answer")
|
54 |
+
answer, metadata = process_answer(question)
|
55 |
+
st.write(answer)
|
56 |
+
st.write(metadata)
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
main()
|
docs/Ali_Md_Monsur_Masterthesis.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d4815c2923a3b8a116976dcf225ae21a670d83ac7d9895bfe418ca6343160d
|
3 |
+
size 3059014
|
ingest.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
|
5 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
|
8 |
+
def main():
|
9 |
+
documents = []
|
10 |
+
for root, dirs, files in os.walk("docs"):
|
11 |
+
for file in files:
|
12 |
+
if file.endswith(".pdf"):
|
13 |
+
print(file)
|
14 |
+
loader = PDFMinerLoader(os.path.join(root, file))
|
15 |
+
documents = loader.load()
|
16 |
+
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
18 |
+
texts = text_splitter.split_documents(documents)
|
19 |
+
|
20 |
+
# Create embeddings
|
21 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
22 |
+
|
23 |
+
# Create FAISS index
|
24 |
+
db = FAISS.from_documents(texts, embeddings)
|
25 |
+
|
26 |
+
# Save the index
|
27 |
+
db.save_local("faiss_index")
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
main()
|