Spaces:
Running
Running
# Copyright 2023 PixArt-Alpha Authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import html | |
import inspect | |
import re | |
import copy | |
import urllib.parse as ul | |
from dataclasses import dataclass | |
from typing import Callable, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from diffusers import DiffusionPipeline, ImagePipelineOutput | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models import AutoencoderKL | |
from diffusers.schedulers import DPMSolverMultistepScheduler | |
from diffusers.utils import (BACKENDS_MAPPING, BaseOutput, deprecate, | |
is_bs4_available, is_ftfy_available, logging, | |
replace_example_docstring) | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange | |
from tqdm import tqdm | |
from transformers import T5EncoderModel, T5Tokenizer | |
from ..models.transformer3d import Transformer3DModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
if is_bs4_available(): | |
from bs4 import BeautifulSoup | |
if is_ftfy_available(): | |
import ftfy | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import EasyAnimatePipeline | |
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too. | |
>>> pipe = EasyAnimatePipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) | |
>>> # Enable memory optimizations. | |
>>> pipe.enable_model_cpu_offload() | |
>>> prompt = "A small cactus with a happy face in the Sahara desert." | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents(encoder_output, generator): | |
if hasattr(encoder_output, "latent_dist"): | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class EasyAnimatePipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
class EasyAnimateInpaintPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using PixArt-Alpha. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. PixArt-Alpha uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
tokenizer (`T5Tokenizer`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
transformer ([`Transformer3DModel`]): | |
A text conditioned `Transformer3DModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
""" | |
bad_punct_regex = re.compile( | |
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" | |
) # noqa | |
_optional_components = ["tokenizer", "text_encoder"] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
def __init__( | |
self, | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
vae: AutoencoderKL, | |
transformer: Transformer3DModel, | |
scheduler: DPMSolverMultistepScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=True) | |
self.mask_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
) | |
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py | |
def mask_text_embeddings(self, emb, mask): | |
if emb.shape[0] == 1: | |
keep_index = mask.sum().item() | |
return emb[:, :, :keep_index, :], keep_index | |
else: | |
masked_feature = emb * mask[:, None, :, None] | |
return masked_feature, emb.shape[2] | |
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: str = "", | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
clean_caption: bool = False, | |
max_sequence_length: int = 120, | |
**kwargs, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
PixArt-Alpha, this should be "". | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
whether to use classifier free guidance or not | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
number of images that should be generated per prompt | |
device: (`torch.device`, *optional*): | |
torch device to place the resulting embeddings on | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" | |
string. | |
clean_caption (`bool`, defaults to `False`): | |
If `True`, the function will preprocess and clean the provided caption before encoding. | |
max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt. | |
""" | |
if "mask_feature" in kwargs: | |
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
if device is None: | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# See Section 3.1. of the paper. | |
max_length = max_sequence_length | |
if prompt_embeds is None: | |
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {max_length} tokens: {removed_text}" | |
) | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.to(device) | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
elif self.transformer is not None: | |
dtype = self.transformer.dtype | |
else: | |
dtype = None | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) | |
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens = [negative_prompt] * batch_size | |
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
negative_prompt_attention_mask = uncond_input.attention_mask | |
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
else: | |
negative_prompt_embeds = None | |
negative_prompt_attention_mask = None | |
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
def _text_preprocessing(self, text, clean_caption=False): | |
if clean_caption and not is_bs4_available(): | |
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) | |
logger.warn("Setting `clean_caption` to False...") | |
clean_caption = False | |
if clean_caption and not is_ftfy_available(): | |
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) | |
logger.warn("Setting `clean_caption` to False...") | |
clean_caption = False | |
if not isinstance(text, (tuple, list)): | |
text = [text] | |
def process(text: str): | |
if clean_caption: | |
text = self._clean_caption(text) | |
text = self._clean_caption(text) | |
else: | |
text = text.lower().strip() | |
return text | |
return [process(t) for t in text] | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
def _clean_caption(self, caption): | |
caption = str(caption) | |
caption = ul.unquote_plus(caption) | |
caption = caption.strip().lower() | |
caption = re.sub("<person>", "person", caption) | |
# urls: | |
caption = re.sub( | |
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
caption = re.sub( | |
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
# html: | |
caption = BeautifulSoup(caption, features="html.parser").text | |
# @<nickname> | |
caption = re.sub(r"@[\w\d]+\b", "", caption) | |
# 31C0—31EF CJK Strokes | |
# 31F0—31FF Katakana Phonetic Extensions | |
# 3200—32FF Enclosed CJK Letters and Months | |
# 3300—33FF CJK Compatibility | |
# 3400—4DBF CJK Unified Ideographs Extension A | |
# 4DC0—4DFF Yijing Hexagram Symbols | |
# 4E00—9FFF CJK Unified Ideographs | |
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
####################################################### | |
# все виды тире / all types of dash --> "-" | |
caption = re.sub( | |
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
"-", | |
caption, | |
) | |
# кавычки к одному стандарту | |
caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
caption = re.sub(r"[‘’]", "'", caption) | |
# " | |
caption = re.sub(r""?", "", caption) | |
# & | |
caption = re.sub(r"&", "", caption) | |
# ip adresses: | |
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
# article ids: | |
caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
# \n | |
caption = re.sub(r"\\n", " ", caption) | |
# "#123" | |
caption = re.sub(r"#\d{1,3}\b", "", caption) | |
# "#12345.." | |
caption = re.sub(r"#\d{5,}\b", "", caption) | |
# "123456.." | |
caption = re.sub(r"\b\d{6,}\b", "", caption) | |
# filenames: | |
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
# | |
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
# this-is-my-cute-cat / this_is_my_cute_cat | |
regex2 = re.compile(r"(?:\-|\_)") | |
if len(re.findall(regex2, caption)) > 3: | |
caption = re.sub(regex2, " ", caption) | |
caption = ftfy.fix_text(caption) | |
caption = html.unescape(html.unescape(caption)) | |
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
caption = re.sub(r"\s+", " ", caption) | |
caption.strip() | |
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
caption = re.sub(r"^\.\S+$", "", caption) | |
return caption.strip() | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
video_length, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
video=None, | |
timestep=None, | |
is_strength_max=True, | |
return_noise=False, | |
return_video_latents=False, | |
): | |
if self.vae.quant_conv.weight.ndim==5: | |
shape = (batch_size, num_channels_latents, int(video_length // 5 * 2) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
else: | |
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if return_video_latents or (latents is None and not is_strength_max): | |
video = video.to(device=device, dtype=dtype) | |
if video.shape[1] == 4: | |
video_latents = video | |
else: | |
video_length = video.shape[2] | |
video = rearrange(video, "b c f h w -> (b f) c h w") | |
video_latents = self._encode_vae_image(image=video, generator=generator) | |
video_latents = rearrange(video_latents, "(b f) c h w -> b c f h w", f=video_length) | |
video_latents = video_latents.repeat(batch_size // video_latents.shape[0], 1, 1, 1, 1) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
noise = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
# if strength is 1. then initialise the latents to noise, else initial to image + noise | |
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep) | |
else: | |
noise = latents.to(device) | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
outputs = (latents,) | |
if return_noise: | |
outputs += (noise,) | |
if return_video_latents: | |
outputs += (video_latents,) | |
return outputs | |
def decode_latents(self, latents): | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
if self.vae.quant_conv.weight.ndim==5: | |
mini_batch_decoder = 2 | |
# Decoder | |
video = [] | |
for i in range(0, latents.shape[2], mini_batch_decoder): | |
with torch.no_grad(): | |
start_index = i | |
end_index = i + mini_batch_decoder | |
latents_bs = self.vae.decode(latents[:, :, start_index:end_index, :, :])[0] | |
video.append(latents_bs) | |
# Smooth | |
mini_batch_encoder = 5 | |
video = torch.cat(video, 2).cpu() | |
for i in range(mini_batch_encoder, video.shape[2], mini_batch_encoder): | |
origin_before = copy.deepcopy(video[:, :, i - 1, :, :]) | |
origin_after = copy.deepcopy(video[:, :, i, :, :]) | |
video[:, :, i - 1, :, :] = origin_before * 0.75 + origin_after * 0.25 | |
video[:, :, i, :, :] = origin_before * 0.25 + origin_after * 0.75 | |
video = video.clamp(-1, 1) | |
else: | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
# video = self.vae.decode(latents).sample | |
video = [] | |
for frame_idx in tqdm(range(latents.shape[0])): | |
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
image_latents = self.vae.config.scaling_factor * image_latents | |
return image_latents | |
def prepare_mask_latents( | |
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance | |
): | |
# resize the mask to latents shape as we concatenate the mask to the latents | |
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
# and half precision | |
video_length = mask.shape[2] | |
mask = mask.to(device=device, dtype=self.vae.dtype) | |
if self.vae.quant_conv.weight.ndim==5: | |
bs = 1 | |
new_mask = [] | |
for i in range(0, mask.shape[0], bs): | |
mini_batch = 5 | |
new_mask_mini_batch = [] | |
for j in range(0, mask.shape[2], mini_batch): | |
mask_bs = mask[i : i + bs, :, j: j + mini_batch, :, :] | |
mask_bs = self.vae.encode(mask_bs)[0] | |
mask_bs = mask_bs.sample() | |
new_mask_mini_batch.append(mask_bs) | |
new_mask_mini_batch = torch.cat(new_mask_mini_batch, dim = 2) | |
new_mask.append(new_mask_mini_batch) | |
mask = torch.cat(new_mask, dim = 0) | |
mask = mask * 0.1825 | |
else: | |
if mask.shape[1] == 4: | |
mask = mask | |
else: | |
video_length = mask.shape[2] | |
mask = rearrange(mask, "b c f h w -> (b f) c h w") | |
mask = self._encode_vae_image(mask, generator=generator) | |
mask = rearrange(mask, "(b f) c h w -> b c f h w", f=video_length) | |
masked_image = masked_image.to(device=device, dtype=self.vae.dtype) | |
if self.vae.quant_conv.weight.ndim==5: | |
bs = 1 | |
new_mask_pixel_values = [] | |
for i in range(0, masked_image.shape[0], bs): | |
mini_batch = 5 | |
new_mask_pixel_values_mini_batch = [] | |
for j in range(0, masked_image.shape[2], mini_batch): | |
mask_pixel_values_bs = masked_image[i : i + bs, :, j: j + mini_batch, :, :] | |
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] | |
mask_pixel_values_bs = mask_pixel_values_bs.sample() | |
new_mask_pixel_values_mini_batch.append(mask_pixel_values_bs) | |
new_mask_pixel_values_mini_batch = torch.cat(new_mask_pixel_values_mini_batch, dim = 2) | |
new_mask_pixel_values.append(new_mask_pixel_values_mini_batch) | |
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) | |
masked_image_latents = masked_image_latents * 0.1825 | |
else: | |
if masked_image.shape[1] == 4: | |
masked_image_latents = masked_image | |
else: | |
video_length = mask.shape[2] | |
masked_image = rearrange(masked_image, "b c f h w -> (b f) c h w") | |
masked_image_latents = self._encode_vae_image(masked_image, generator=generator) | |
masked_image_latents = rearrange(masked_image_latents, "(b f) c h w -> b c f h w", f=video_length) | |
# aligning device to prevent device errors when concating it with the latent model input | |
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
return mask, masked_image_latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
video_length: Optional[int] = None, | |
video: Union[torch.FloatTensor] = None, | |
mask_video: Union[torch.FloatTensor] = None, | |
masked_video_latents: Union[torch.FloatTensor] = None, | |
negative_prompt: str = "", | |
num_inference_steps: int = 20, | |
timesteps: List[int] = None, | |
guidance_scale: float = 4.5, | |
num_images_per_prompt: Optional[int] = 1, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
strength: float = 1.0, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "latent", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
clean_caption: bool = True, | |
mask_feature: bool = True, | |
max_sequence_length: int = 120 | |
) -> Union[EasyAnimatePipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The width in pixels of the generated image. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not | |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clean_caption (`bool`, *optional*, defaults to `True`): | |
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
prompt. | |
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
# 1. Check inputs. Raise error if not correct | |
height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
# 2. Default height and width to transformer | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = self.encode_prompt( | |
prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
clean_caption=clean_caption, | |
max_sequence_length=max_sequence_length, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
latent_timestep = timesteps[:1].repeat(batch_size) | |
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
is_strength_max = strength == 1.0 | |
if video is not None: | |
video_length = video.shape[2] | |
init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
init_video = init_video.to(dtype=torch.float32) | |
init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length) | |
else: | |
init_video = None | |
# Prepare latent variables | |
num_channels_latents = self.vae.config.latent_channels | |
num_channels_transformer = self.transformer.config.in_channels | |
return_image_latents = num_channels_transformer == 4 | |
# 5. Prepare latents. | |
latents_outputs = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
video_length, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
video=init_video, | |
timestep=latent_timestep, | |
is_strength_max=is_strength_max, | |
return_noise=True, | |
return_video_latents=return_image_latents, | |
) | |
if return_image_latents: | |
latents, noise, image_latents = latents_outputs | |
else: | |
latents, noise = latents_outputs | |
latents_dtype = latents.dtype | |
if mask_video is not None: | |
# Prepare mask latent variables | |
video_length = video.shape[2] | |
mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
mask_condition = mask_condition.to(dtype=torch.float32) | |
mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length) | |
if masked_video_latents is None: | |
masked_video = init_video * (mask_condition < 0.5) + torch.ones_like(init_video) * (mask_condition > 0.5) * -1 | |
else: | |
masked_video = masked_video_latents | |
mask, masked_video_latents = self.prepare_mask_latents( | |
mask_condition, | |
masked_video, | |
batch_size, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
do_classifier_free_guidance, | |
) | |
else: | |
mask = torch.zeros_like(latents).to(latents.device, latents.dtype) | |
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) | |
# Check that sizes of mask, masked image and latents match | |
if num_channels_transformer == 12: | |
# default case for runwayml/stable-diffusion-inpainting | |
num_channels_mask = mask.shape[1] | |
num_channels_masked_image = masked_video_latents.shape[1] | |
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.transformer.config.in_channels: | |
raise ValueError( | |
f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects" | |
f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
" `pipeline.transformer` or your `mask_image` or `image` input." | |
) | |
elif num_channels_transformer == 4: | |
raise ValueError( | |
f"The transformer {self.transformer.__class__} should have 9 input channels, not {self.transformer.config.in_channels}." | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Prepare micro-conditions. | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
if self.transformer.config.sample_size == 128: | |
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) | |
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) | |
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) | |
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) | |
if do_classifier_free_guidance: | |
resolution = torch.cat([resolution, resolution], dim=0) | |
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) | |
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} | |
# 7. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if num_channels_transformer == 12: | |
mask_input = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
masked_video_latents_input = ( | |
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents | |
) | |
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1) | |
current_timestep = t | |
if not torch.is_tensor(current_timestep): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = latent_model_input.device.type == "mps" | |
if isinstance(current_timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) | |
elif len(current_timestep.shape) == 0: | |
current_timestep = current_timestep[None].to(latent_model_input.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
latent_model_input, | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=prompt_attention_mask, | |
timestep=current_timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
inpaint_latents=inpaint_latents.to(latent_model_input.dtype), | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# learned sigma | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
# compute previous image: x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# Post-processing | |
video = self.decode_latents(latents) | |
# Convert to tensor | |
if output_type == "latent": | |
video = torch.from_numpy(video) | |
if not return_dict: | |
return video | |
return EasyAnimatePipelineOutput(videos=video) |