Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from gradio.components import Dropdown, Image, Textbox | |
from huggingface_hub import HfApi, ModelFilter | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
# Get the list of models from the Hugging Face Hub | |
api = HfApi() | |
models_infos = api.list_models(author="jat-project", filter=ModelFilter(tags="text-generation")) | |
models_names = [model.modelId for model in models_infos] | |
# Dictionary to store loaded models and their pipelines | |
models = {} | |
# Load a default model initially | |
default_model_name = "jat-project/jat2-small-untrained" | |
def generate_text(model_name, input_image): | |
# Check if the selected model is already loaded | |
if model_name not in models: | |
# Inform the user that the model is loading | |
yield "Loading model..." | |
# Load the model | |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True, padding_side='left') | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
models[model_name] = model, processor | |
# Get the model for the selected model | |
model, processor = models[model_name] | |
# Inform the user that the text is being generated | |
yield "Generating caption..." | |
# Convert the input image to a tensor | |
pixel_values = processor(images=input_image, return_tensors="pt").pixel_values | |
# Generate text | |
generated_ids = model.generate(pixel_values=pixel_values, max_length=100, early_stopping=True) | |
generated_text = processor.decode(generated_ids[0], skip_special_tokens=True) | |
# Return the generated text | |
yield generated_text | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, # Function to be called on user input | |
inputs=[ | |
Dropdown(models_names, label="Select Model", value=default_model_name), # Select model | |
Image(label="Input Image"), # Image input | |
], | |
outputs=Textbox(label="Generated Caption"), # Textbox to display the generated text | |
title="JAT Image Captioning", # Title of the interface | |
) | |
# Launch the Gradio interface | |
iface.launch(enable_queue=True) | |