# # import gradio as gr # # # # def greet(name): # # return "Hello " + name + "!!" # # # # demo = gr.Interface(fn=greet, inputs="text", outputs="text") # # demo.launch() # # # # import gradio as gr # from sklearn.neighbors import KNeighborsClassifier # import numpy as np # # # Training data # X = np.array([[1, 2], [2, 3], [3, 1], [6, 5], [7, 7], [8, 6]]) # y = np.array([0, 0, 0, 1, 1, 1]) # # # Training the model # model = KNeighborsClassifier(n_neighbors=3) # model.fit(X, y) # # # Define the prediction function # def classify_point(x, y): # prediction = model.predict([[x, y]]) # return "Class " + str(prediction[0]) # # # Create a Gradio interface # demo = gr.Interface( # fn=classify_point, # inputs=["number", "number"], # outputs="text", # description="Predict the class of a point based on its coordinates using K-Nearest Neighbors" # ) # # # Launch the app # demo.launch() from dotenv import load_dotenv import os load_dotenv() hf_token = os.getenv("HF_TOKEN") import gradio as gr from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, BitsAndBytesConfig import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoPeftModelForCausalLM.from_pretrained( 'pykale/llama-2-7b-ocr', quantization_config=bnb_config, low_cpu_mem_usage=True, torch_dtype=torch.float16, ) tokenizer = AutoTokenizer.from_pretrained('pykale/llama-2-7b-ocr', token=hf_token) def fix_ocr_errors(ocr): prompt = f"""### instruksi: perbaiki kata yang salah pada hasil OCR, hasil perbaikan harus dalam bahasa indonesia. ### Input: {ocr} ### Response: """ input_ids = tokenizer(prompt, max_length=1024, return_tensors='pt', truncation=True).input_ids.cuda() with torch.inference_mode(): outputs = model.generate( input_ids=input_ids, max_new_tokens=1024, do_sample=True, temperature=0.7, top_p=0.1, top_k=40 ) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) corrected_text = pred[len(prompt):].strip() return corrected_text iface = gr.Interface( fn=fix_ocr_errors, inputs=gr.Textbox(lines=5, placeholder="Masukkan teks OCR di sini..."), outputs=gr.Textbox(label="text"), title="Perbaiki Kesalahan OCR", description="Masukkan teks dengan kesalahan OCR dan model akan mencoba memperbaikinya." ) if __name__ == "__main__": iface.launch()