import gradio as gr from urllib.parse import urlparse import requests import time import os from utils.gradio_helpers import parse_outputs, process_outputs inputs = [] inputs.append(gr.Image( label="Image", type="filepath" )) inputs.append(gr.Textbox( label="Prompt", info='''Prompt''' )) inputs.append(gr.Textbox( label="Negative Prompt", info='''Negative Prompt''' )) inputs.append(gr.Number( label="Scale Factor", info='''Scale factor''', value=2 )) inputs.append(gr.Slider( label="Dynamic", info='''HDR, try from 3 - 9''', value=6, minimum=1, maximum=50 )) inputs.append(gr.Number( label="Creativity", info='''Creativity, try from 0.3 - 0.9''', value=0.35 )) inputs.append(gr.Number( label="Resemblance", info='''Resemblance, try from 0.3 - 1.6''', value=0.6 )) inputs.append(gr.Dropdown( choices=[16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256], label="tiling_width", info='''Fractality, set lower tile width for a high Fractality''', value="112" )) inputs.append(gr.Dropdown( choices=[16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256], label="tiling_height", info='''Fractality, set lower tile height for a high Fractality''', value="144" )) inputs.append(gr.Dropdown( choices=['epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]', 'juggernaut_reborn.safetensors [338b85bc4f]', 'flat2DAnimerge_v45Sharp.safetensors'], label="sd_model", info='''Stable Diffusion model checkpoint''', value="juggernaut_reborn.safetensors [338b85bc4f]" )) inputs.append(gr.Dropdown( choices=['DPM++ 2M Karras', 'DPM++ SDE Karras', 'DPM++ 2M SDE Exponential', 'DPM++ 2M SDE Karras', 'Euler a', 'Euler', 'LMS', 'Heun', 'DPM2', 'DPM2 a', 'DPM++ 2S a', 'DPM++ 2M', 'DPM++ SDE', 'DPM++ 2M SDE', 'DPM++ 2M SDE Heun', 'DPM++ 2M SDE Heun Karras', 'DPM++ 2M SDE Heun Exponential', 'DPM++ 3M SDE', 'DPM++ 3M SDE Karras', 'DPM++ 3M SDE Exponential', 'DPM fast', 'DPM adaptive', 'LMS Karras', 'DPM2 Karras', 'DPM2 a Karras', 'DPM++ 2S a Karras', 'Restart', 'DDIM', 'PLMS', 'UniPC'], label="scheduler", info='''scheduler''', value="DPM++ 3M SDE Karras" )) inputs.append(gr.Slider( label="Num Inference Steps", info='''Number of denoising steps''', value=18, minimum=1, maximum=100, step=1, )) inputs.append(gr.Number( label="Seed", info='''Random seed. Leave blank to randomize the seed''', value=1337 )) inputs.append(gr.Checkbox( label="Downscaling", info='''Downscale the image before upscaling. Can improve quality and speed for images with high resolution but lower quality''', value=False )) inputs.append(gr.Number( label="Downscaling Resolution", info='''Downscaling resolution''', value=768 )) inputs.append(gr.Textbox( label="Lora Links", info='''Link to a lora file you want to use in your upscaling. Multiple links possible, seperated by comma''' )) inputs.append(gr.Textbox( label="Custom Sd Model", info='''Link to a custom safetensors checkpoint file you want to use in your upscaling. Will overwrite sd_model checkpoint.''' )) names = ['image', 'prompt', 'negative_prompt', 'scale_factor', 'dynamic', 'creativity', 'resemblance', 'tiling_width', 'tiling_height', 'sd_model', 'scheduler', 'num_inference_steps', 'seed', 'downscaling', 'downscaling_resolution', 'lora_links', 'custom_sd_model'] outputs = [] outputs.append(gr.Image()) expected_outputs = len(outputs) def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): headers = {'Content-Type': 'application/json'} payload = {"input": {}} base_url = "http://0.0.0.0:7860" for i, key in enumerate(names): value = args[i] if value and (os.path.exists(str(value))): value = f"{base_url}/file=" + value if value is not None and value != "": payload["input"][key] = value response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) if response.status_code == 201: follow_up_url = response.json()["urls"]["get"] response = requests.get(follow_up_url, headers=headers) while response.json()["status"] != "succeeded": if response.json()["status"] == "failed": raise gr.Error("The submission failed!") response = requests.get(follow_up_url, headers=headers) time.sleep(1) if response.status_code == 200: json_response = response.json() #If the output component is JSON return the entire output response if(outputs[0].get_config()["name"] == "json"): return json_response["output"] predict_outputs = parse_outputs(json_response["output"]) processed_outputs = process_outputs(predict_outputs) difference_outputs = expected_outputs - len(processed_outputs) # If less outputs than expected, hide the extra ones if difference_outputs > 0: extra_outputs = [gr.update(visible=False)] * difference_outputs processed_outputs.extend(extra_outputs) # If more outputs than expected, cap the outputs to the expected number elif difference_outputs < 0: processed_outputs = processed_outputs[:difference_outputs] return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] else: if(response.status_code == 409): raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") raise gr.Error(f"The submission failed! Error: {response.status_code}") title = "Demo for clarity-upscaler cog image by philz1337x" model_description = "High resolution image Upscaler and Enhancer. Use at ClarityAI.cc. A free Magnific alternative. Twitter/X: @philz1337x" app = gr.Interface( fn=predict, inputs=inputs, outputs=outputs, title=title, description=model_description, allow_flagging="never", ) app.launch(share=True)