|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
|
|
import gradio as gr |
|
import PIL.Image |
|
import spaces |
|
import torch |
|
from transformers import InstructBlipForConditionalGeneration, InstructBlipProcessor |
|
|
|
DESCRIPTION = "# InstructBLIP" |
|
|
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) |
|
|
|
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model_id = "Salesforce/instructblip-vicuna-7b" |
|
processor = InstructBlipProcessor.from_pretrained(model_id) |
|
model = InstructBlipForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
|
|
|
|
@spaces.GPU |
|
def run( |
|
secret_token: str, |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
text_decoding_method: str = "Nucleus sampling", |
|
num_beams: int = 5, |
|
max_length: int = 256, |
|
min_length: int = 1, |
|
top_p: float = 0.9, |
|
repetition_penalty: float = 1.5, |
|
length_penalty: float = 1.0, |
|
temperature: float = 1.0, |
|
) -> str: |
|
if secret_token != SECRET_TOKEN: |
|
raise gr.Error( |
|
f'Invalid secret token. Please fork the original space if you want to use it for yourself.') |
|
|
|
h, w = image.size |
|
scale = MAX_IMAGE_SIZE / max(h, w) |
|
if scale < 1: |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
image = image.resize((new_w, new_h), resample=PIL.Image.Resampling.LANCZOS) |
|
|
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = model.generate( |
|
**inputs, |
|
do_sample=text_decoding_method == "Nucleus sampling", |
|
num_beams=num_beams, |
|
max_length=max_length, |
|
min_length=min_length, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
temperature=temperature, |
|
) |
|
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
return generated_caption |
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
secret_token = gr.Textbox(label="Secret token") |
|
input_image = gr.Image(type="pil") |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button() |
|
with gr.Accordion(label="Advanced options", open=False): |
|
text_decoding_method = gr.Radio( |
|
label="Text Decoding Method", |
|
choices=["Beam search", "Nucleus sampling"], |
|
value="Nucleus sampling", |
|
) |
|
num_beams = gr.Slider( |
|
label="Number of Beams", |
|
minimum=1, |
|
maximum=10, |
|
step=1, |
|
value=5, |
|
) |
|
max_length = gr.Slider( |
|
label="Max Length", |
|
minimum=1, |
|
maximum=512, |
|
step=1, |
|
value=256, |
|
) |
|
min_length = gr.Slider( |
|
label="Minimum Length", |
|
minimum=1, |
|
maximum=64, |
|
step=1, |
|
value=1, |
|
) |
|
top_p = gr.Slider( |
|
label="Top P", |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.9, |
|
) |
|
repetition_penalty = gr.Slider( |
|
label="Repetition Penalty", |
|
info="Larger value prevents repetition.", |
|
minimum=1.0, |
|
maximum=5.0, |
|
step=0.5, |
|
value=1.5, |
|
) |
|
length_penalty = gr.Slider( |
|
label="Length Penalty", |
|
info="Set to larger for longer sequence, used with beam search.", |
|
minimum=-1.0, |
|
maximum=2.0, |
|
step=0.2, |
|
value=1.0, |
|
) |
|
temperature = gr.Slider( |
|
label="Temperature", |
|
info="Used with nucleus sampling.", |
|
minimum=0.5, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
|
|
with gr.Column(): |
|
output = gr.Textbox(label="Result") |
|
|
|
gr.on( |
|
triggers=[prompt.submit, run_button.click], |
|
fn=run, |
|
inputs=[ |
|
secret_token, |
|
input_image, |
|
prompt, |
|
text_decoding_method, |
|
num_beams, |
|
max_length, |
|
min_length, |
|
top_p, |
|
repetition_penalty, |
|
length_penalty, |
|
temperature, |
|
], |
|
outputs=output, |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|