File size: 32,863 Bytes
43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
# Audio_Files.py
#########################################
# Audio Processing Library
# This library is used to download or load audio files from a local directory.
#
####
#
# Functions:
#
# download_audio_file(url, save_path)
# process_audio(
# process_audio_file(audio_url, audio_file, whisper_model="small.en", api_name=None, api_key=None)
#
#
#########################################
# Imports
import json
import logging
import os
import subprocess
import tempfile
import time
import uuid
from datetime import datetime
from pathlib import Path
#
# External Imports
import requests
import yt_dlp
#
# Local Imports
from App_Function_Libraries.DB.DB_Manager import add_media_with_keywords, \
check_media_and_whisper_model
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram
from App_Function_Libraries.Summarization.Summarization_General_Lib import perform_summarization
from App_Function_Libraries.Utils.Utils import downloaded_files, \
sanitize_filename, generate_unique_id, temp_files
from App_Function_Libraries.Video_DL_Ingestion_Lib import extract_metadata
from App_Function_Libraries.Audio.Audio_Transcription_Lib import speech_to_text
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
#
#######################################################################################################################
# Function Definitions
#
MAX_FILE_SIZE = 500 * 1024 * 1024
def download_audio_file(url, current_whisper_model="", use_cookies=False, cookies=None):
try:
# Check if media already exists in the database and compare whisper models
should_download, reason = check_media_and_whisper_model(
url=url,
current_whisper_model=current_whisper_model
)
if not should_download:
logging.info(f"Skipping audio download: {reason}")
return None
logging.info(f"Proceeding with audio download: {reason}")
# Set up the request headers
headers = {}
if use_cookies and cookies:
try:
cookie_dict = json.loads(cookies)
headers['Cookie'] = '; '.join([f'{k}={v}' for k, v in cookie_dict.items()])
except json.JSONDecodeError:
logging.warning("Invalid cookie format. Proceeding without cookies.")
# Make the request
response = requests.get(url, headers=headers, stream=True)
# Raise an exception for bad status codes
response.raise_for_status()
# Get the file size
file_size = int(response.headers.get('content-length', 0))
if file_size > 500 * 1024 * 1024: # 500 MB limit
raise ValueError("File size exceeds the 500MB limit.")
# Generate a unique filename
file_name = f"audio_{uuid.uuid4().hex[:8]}.mp3"
save_path = os.path.join('downloads', file_name)
# Ensure the downloads directory exists
os.makedirs('downloads', exist_ok=True)
# Download the file
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
logging.info(f"Audio file downloaded successfully: {save_path}")
return save_path
except requests.RequestException as e:
logging.error(f"Error downloading audio file: {str(e)}")
raise
except ValueError as e:
logging.error(str(e))
raise
except Exception as e:
logging.error(f"Unexpected error downloading audio file: {str(e)}")
raise
def process_audio_files(audio_urls, audio_file, whisper_model, api_name, api_key, use_cookies, cookies, keep_original,
custom_keywords, custom_prompt_input, chunk_method, max_chunk_size, chunk_overlap,
use_adaptive_chunking, use_multi_level_chunking, chunk_language, diarize,
keep_timestamps, custom_title):
start_time = time.time() # Start time for processing
processed_count = 0
failed_count = 0
progress = []
all_transcriptions = []
all_summaries = []
#v2
def format_transcription_with_timestamps(segments):
if keep_timestamps:
formatted_segments = []
for segment in segments:
start = segment.get('Time_Start', 0)
end = segment.get('Time_End', 0)
text = segment.get('Text', '').strip() # Ensure text is stripped of leading/trailing spaces
# Add the formatted timestamp and text to the list, followed by a newline
formatted_segments.append(f"[{start:.2f}-{end:.2f}] {text}")
# Join the segments with a newline to ensure proper formatting
return "\n".join(formatted_segments)
else:
# Join the text without timestamps
return "\n".join([segment.get('Text', '').strip() for segment in segments])
def update_progress(message):
progress.append(message)
return "\n".join(progress)
def cleanup_files():
for file in temp_files:
try:
if os.path.exists(file):
os.remove(file)
update_progress(f"Temporary file {file} removed.")
except Exception as e:
update_progress(f"Failed to remove temporary file {file}: {str(e)}")
def reencode_mp3(mp3_file_path):
try:
reencoded_mp3_path = mp3_file_path.replace(".mp3", "_reencoded.mp3")
subprocess.run([ffmpeg_cmd, '-i', mp3_file_path, '-codec:a', 'libmp3lame', reencoded_mp3_path], check=True)
update_progress(f"Re-encoded {mp3_file_path} to {reencoded_mp3_path}.")
return reencoded_mp3_path
except subprocess.CalledProcessError as e:
update_progress(f"Error re-encoding {mp3_file_path}: {str(e)}")
raise
def convert_mp3_to_wav(mp3_file_path):
try:
wav_file_path = mp3_file_path.replace(".mp3", ".wav")
subprocess.run([ffmpeg_cmd, '-i', mp3_file_path, wav_file_path], check=True)
update_progress(f"Converted {mp3_file_path} to {wav_file_path}.")
return wav_file_path
except subprocess.CalledProcessError as e:
update_progress(f"Error converting {mp3_file_path} to WAV: {str(e)}")
raise
try:
# Check and set the ffmpeg command
global ffmpeg_cmd
if os.name == "nt":
logging.debug("Running on Windows")
ffmpeg_cmd = os.path.join(os.getcwd(), "Bin", "ffmpeg.exe")
else:
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
# Ensure ffmpeg is accessible
if not os.path.exists(ffmpeg_cmd) and os.name == "nt":
raise FileNotFoundError(f"ffmpeg executable not found at path: {ffmpeg_cmd}")
# Define chunk options early to avoid undefined errors
chunk_options = {
'method': chunk_method,
'max_size': max_chunk_size,
'overlap': chunk_overlap,
'adaptive': use_adaptive_chunking,
'multi_level': use_multi_level_chunking,
'language': chunk_language
}
# Process multiple URLs
urls = [url.strip() for url in audio_urls.split('\n') if url.strip()]
for i, url in enumerate(urls):
update_progress(f"Processing URL {i + 1}/{len(urls)}: {url}")
# Download and process audio file
audio_file_path = download_audio_file(url, use_cookies, cookies)
if not os.path.exists(audio_file_path):
update_progress(f"Downloaded file not found: {audio_file_path}")
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
continue
temp_files.append(audio_file_path)
update_progress("Audio file downloaded successfully.")
# Re-encode MP3 to fix potential issues
reencoded_mp3_path = reencode_mp3(audio_file_path)
if not os.path.exists(reencoded_mp3_path):
update_progress(f"Re-encoded file not found: {reencoded_mp3_path}")
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
continue
temp_files.append(reencoded_mp3_path)
# Convert re-encoded MP3 to WAV
wav_file_path = convert_mp3_to_wav(reencoded_mp3_path)
if not os.path.exists(wav_file_path):
update_progress(f"Converted WAV file not found: {wav_file_path}")
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
continue
temp_files.append(wav_file_path)
# Initialize transcription
transcription = ""
# Transcribe audio
if diarize:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model, diarize=True)
else:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model)
# Handle segments nested under 'segments' key
if isinstance(segments, dict) and 'segments' in segments:
segments = segments['segments']
if isinstance(segments, list):
# Log first 5 segments for debugging
logging.debug(f"Segments before formatting: {segments[:5]}")
transcription = format_transcription_with_timestamps(segments)
logging.debug(f"Formatted transcription (first 500 chars): {transcription[:500]}")
update_progress("Audio transcribed successfully.")
else:
update_progress("Unexpected segments format received from speech_to_text.")
logging.error(f"Unexpected segments format: {segments}")
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
continue
if not transcription.strip():
update_progress("Transcription is empty.")
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
else:
# Apply chunking
chunked_text = improved_chunking_process(transcription, chunk_options)
# Summarize
logging.debug(f"Audio Transcription API Name: {api_name}")
if api_name:
try:
summary = perform_summarization(api_name, chunked_text, custom_prompt_input, api_key)
update_progress("Audio summarized successfully.")
except Exception as e:
logging.error(f"Error during summarization: {str(e)}")
summary = "Summary generation failed"
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
else:
summary = "No summary available (API not provided)"
all_transcriptions.append(transcription)
all_summaries.append(summary)
# Use custom_title if provided, otherwise use the original filename
title = custom_title if custom_title else os.path.basename(wav_file_path)
# Add to database
add_media_with_keywords(
url=url,
title=title,
media_type='audio',
content=transcription,
keywords=custom_keywords,
prompt=custom_prompt_input,
summary=summary,
transcription_model=whisper_model,
author="Unknown",
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
update_progress("Audio file processed and added to database.")
processed_count += 1
log_counter(
metric_name="audio_files_processed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
# Process uploaded file if provided
if audio_file:
url = generate_unique_id()
if os.path.getsize(audio_file.name) > MAX_FILE_SIZE:
update_progress(
f"Uploaded file size exceeds the maximum limit of {MAX_FILE_SIZE / (1024 * 1024):.2f}MB. Skipping this file.")
else:
try:
# Re-encode MP3 to fix potential issues
reencoded_mp3_path = reencode_mp3(audio_file.name)
if not os.path.exists(reencoded_mp3_path):
update_progress(f"Re-encoded file not found: {reencoded_mp3_path}")
return update_progress("Processing failed: Re-encoded file not found"), "", ""
temp_files.append(reencoded_mp3_path)
# Convert re-encoded MP3 to WAV
wav_file_path = convert_mp3_to_wav(reencoded_mp3_path)
if not os.path.exists(wav_file_path):
update_progress(f"Converted WAV file not found: {wav_file_path}")
return update_progress("Processing failed: Converted WAV file not found"), "", ""
temp_files.append(wav_file_path)
# Initialize transcription
transcription = ""
if diarize:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model, diarize=True)
else:
segments = speech_to_text(wav_file_path, whisper_model=whisper_model)
# Handle segments nested under 'segments' key
if isinstance(segments, dict) and 'segments' in segments:
segments = segments['segments']
if isinstance(segments, list):
transcription = format_transcription_with_timestamps(segments)
else:
update_progress("Unexpected segments format received from speech_to_text.")
logging.error(f"Unexpected segments format: {segments}")
chunked_text = improved_chunking_process(transcription, chunk_options)
logging.debug(f"Audio Transcription API Name: {api_name}")
if api_name:
try:
summary = perform_summarization(api_name, chunked_text, custom_prompt_input, api_key)
update_progress("Audio summarized successfully.")
except Exception as e:
logging.error(f"Error during summarization: {str(e)}")
summary = "Summary generation failed"
else:
summary = "No summary available (API not provided)"
all_transcriptions.append(transcription)
all_summaries.append(summary)
# Use custom_title if provided, otherwise use the original filename
title = custom_title if custom_title else os.path.basename(wav_file_path)
add_media_with_keywords(
url="Uploaded File",
title=title,
media_type='audio',
content=transcription,
keywords=custom_keywords,
prompt=custom_prompt_input,
summary=summary,
transcription_model=whisper_model,
author="Unknown",
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
update_progress("Uploaded file processed and added to database.")
processed_count += 1
log_counter(
metric_name="audio_files_processed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
except Exception as e:
update_progress(f"Error processing uploaded file: {str(e)}")
logging.error(f"Error processing uploaded file: {str(e)}")
failed_count += 1
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
return update_progress("Processing failed: Error processing uploaded file"), "", ""
# Final cleanup
if not keep_original:
cleanup_files()
end_time = time.time()
processing_time = end_time - start_time
# Log processing time
log_histogram(
metric_name="audio_processing_time_seconds",
value=processing_time,
labels={"whisper_model": whisper_model, "api_name": api_name}
)
# Optionally, log total counts
log_counter(
metric_name="total_audio_files_processed",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=processed_count
)
log_counter(
metric_name="total_audio_files_failed",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=failed_count
)
final_progress = update_progress("All processing complete.")
final_transcriptions = "\n\n".join(all_transcriptions)
final_summaries = "\n\n".join(all_summaries)
return final_progress, final_transcriptions, final_summaries
except Exception as e:
logging.error(f"Error processing audio files: {str(e)}")
log_counter(
metric_name="audio_files_failed_total",
labels={"whisper_model": whisper_model, "api_name": api_name},
value=1
)
cleanup_files()
return update_progress(f"Processing failed: {str(e)}"), "", ""
def format_transcription_with_timestamps(segments, keep_timestamps):
"""
Formats the transcription segments with or without timestamps.
Parameters:
segments (list): List of transcription segments.
keep_timestamps (bool): Whether to include timestamps.
Returns:
str: Formatted transcription.
"""
if keep_timestamps:
formatted_segments = []
for segment in segments:
start = segment.get('Time_Start', 0)
end = segment.get('Time_End', 0)
text = segment.get('Text', '').strip()
formatted_segments.append(f"[{start:.2f}-{end:.2f}] {text}")
return "\n".join(formatted_segments)
else:
return "\n".join([segment.get('Text', '').strip() for segment in segments])
def download_youtube_audio(url):
try:
# Determine ffmpeg path based on the operating system.
ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg'
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Extract information about the video
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False)
sanitized_title = sanitize_filename(info_dict['title'])
# Setup the temporary filenames
temp_video_path = Path(temp_dir) / f"{sanitized_title}_temp.mp4"
temp_audio_path = Path(temp_dir) / f"{sanitized_title}.mp3"
# Initialize yt-dlp with options for downloading
ydl_opts = {
'format': 'bestaudio[ext=m4a]/best[height<=480]', # Prefer best audio, or video up to 480p
'ffmpeg_location': ffmpeg_path,
'outtmpl': str(temp_video_path),
'noplaylist': True,
'quiet': True
}
# Execute yt-dlp to download the video/audio
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Check if the file exists
if not temp_video_path.exists():
raise FileNotFoundError(f"Expected file was not found: {temp_video_path}")
# Use ffmpeg to extract audio
ffmpeg_command = [
ffmpeg_path,
'-i', str(temp_video_path),
'-vn', # No video
'-acodec', 'libmp3lame',
'-b:a', '192k',
str(temp_audio_path)
]
subprocess.run(ffmpeg_command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
# Check if the audio file was created
if not temp_audio_path.exists():
raise FileNotFoundError(f"Expected audio file was not found: {temp_audio_path}")
# Create a persistent directory for the download if it doesn't exist
persistent_dir = Path("downloads")
persistent_dir.mkdir(exist_ok=True)
# Move the file from the temporary directory to the persistent directory
persistent_file_path = persistent_dir / f"{sanitized_title}.mp3"
os.replace(str(temp_audio_path), str(persistent_file_path))
# Add the file to the list of downloaded files
downloaded_files.append(str(persistent_file_path))
return str(persistent_file_path), f"Audio downloaded successfully: {sanitized_title}.mp3"
except Exception as e:
return None, f"Error downloading audio: {str(e)}"
def process_podcast(url, title, author, keywords, custom_prompt, api_name, api_key, whisper_model,
keep_original=False, enable_diarization=False, use_cookies=False, cookies=None,
chunk_method=None, max_chunk_size=300, chunk_overlap=0, use_adaptive_chunking=False,
use_multi_level_chunking=False, chunk_language='english', keep_timestamps=True):
"""
Processes a podcast by downloading the audio, transcribing it, summarizing the transcription,
and adding the results to the database. Metrics are logged throughout the process.
Parameters:
url (str): URL of the podcast.
title (str): Title of the podcast.
author (str): Author of the podcast.
keywords (str): Comma-separated keywords.
custom_prompt (str): Custom prompt for summarization.
api_name (str): API name for summarization.
api_key (str): API key for summarization.
whisper_model (str): Whisper model to use for transcription.
keep_original (bool): Whether to keep the original audio file.
enable_diarization (bool): Whether to enable speaker diarization.
use_cookies (bool): Whether to use cookies for authenticated downloads.
cookies (str): JSON-formatted cookies string.
chunk_method (str): Method for chunking text.
max_chunk_size (int): Maximum size for each text chunk.
chunk_overlap (int): Overlap size between chunks.
use_adaptive_chunking (bool): Whether to use adaptive chunking.
use_multi_level_chunking (bool): Whether to use multi-level chunking.
chunk_language (str): Language for chunking.
keep_timestamps (bool): Whether to keep timestamps in transcription.
Returns:
tuple: (progress_message, transcription, summary, title, author, keywords, error_message)
"""
start_time = time.time() # Start time for processing
error_message = ""
temp_files = []
# Define labels for metrics
labels = {
"whisper_model": whisper_model,
"api_name": api_name if api_name else "None"
}
def update_progress(message):
"""
Updates the progress messages.
Parameters:
message (str): Progress message to append.
Returns:
str: Combined progress messages.
"""
progress.append(message)
return "\n".join(progress)
def cleanup_files():
if not keep_original:
for file in temp_files:
try:
if os.path.exists(file):
os.remove(file)
update_progress(f"Temporary file {file} removed.")
except Exception as e:
update_progress(f"Failed to remove temporary file {file}: {str(e)}")
progress = [] # Initialize progress messages
try:
# Handle cookies if required
if use_cookies:
cookies = json.loads(cookies)
# Download the podcast audio file
audio_file = download_audio_file(url, whisper_model, use_cookies, cookies)
if not audio_file:
raise RuntimeError("Failed to download podcast audio.")
temp_files.append(audio_file)
update_progress("Podcast downloaded successfully.")
# Extract metadata from the podcast
metadata = extract_metadata(url)
title = title or metadata.get('title', 'Unknown Podcast')
author = author or metadata.get('uploader', 'Unknown Author')
# Format metadata for storage
metadata_text = f"""
Metadata:
Title: {title}
Author: {author}
Series: {metadata.get('series', 'N/A')}
Episode: {metadata.get('episode', 'N/A')}
Season: {metadata.get('season', 'N/A')}
Upload Date: {metadata.get('upload_date', 'N/A')}
Duration: {metadata.get('duration', 'N/A')} seconds
Description: {metadata.get('description', 'N/A')}
"""
# Update keywords with metadata information
new_keywords = []
if metadata.get('series'):
new_keywords.append(f"series:{metadata['series']}")
if metadata.get('episode'):
new_keywords.append(f"episode:{metadata['episode']}")
if metadata.get('season'):
new_keywords.append(f"season:{metadata['season']}")
keywords = f"{keywords},{','.join(new_keywords)}" if keywords else ','.join(new_keywords)
update_progress(f"Metadata extracted - Title: {title}, Author: {author}, Keywords: {keywords}")
# Transcribe the podcast audio
try:
if enable_diarization:
segments = speech_to_text(audio_file, whisper_model=whisper_model, diarize=True)
else:
segments = speech_to_text(audio_file, whisper_model=whisper_model)
# SEems like this could be optimized... FIXME
def format_segment(segment):
start = segment.get('start', 0)
end = segment.get('end', 0)
text = segment.get('Text', '')
if isinstance(segments, dict) and 'segments' in segments:
segments = segments['segments']
if isinstance(segments, list):
transcription = format_transcription_with_timestamps(segments, keep_timestamps)
update_progress("Podcast transcribed successfully.")
else:
raise ValueError("Unexpected segments format received from speech_to_text.")
if not transcription.strip():
raise ValueError("Transcription is empty.")
except Exception as e:
error_message = f"Transcription failed: {str(e)}"
raise RuntimeError(error_message)
# Apply chunking to the transcription
chunk_options = {
'method': chunk_method,
'max_size': max_chunk_size,
'overlap': chunk_overlap,
'adaptive': use_adaptive_chunking,
'multi_level': use_multi_level_chunking,
'language': chunk_language
}
chunked_text = improved_chunking_process(transcription, chunk_options)
# Combine metadata and transcription
full_content = metadata_text + "\n\nTranscription:\n" + transcription
# Summarize the transcription if API is provided
summary = None
if api_name:
try:
summary = perform_summarization(api_name, chunked_text, custom_prompt, api_key)
update_progress("Podcast summarized successfully.")
except Exception as e:
error_message = f"Summarization failed: {str(e)}"
raise RuntimeError(error_message)
else:
summary = "No summary available (API not provided)"
# Add the processed podcast to the database
try:
add_media_with_keywords(
url=url,
title=title,
media_type='podcast',
content=full_content,
keywords=keywords,
prompt=custom_prompt,
summary=summary or "No summary available",
transcription_model=whisper_model,
author=author,
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
update_progress("Podcast added to database successfully.")
except Exception as e:
error_message = f"Error adding podcast to database: {str(e)}"
raise RuntimeError(error_message)
# Cleanup temporary files if required
cleanup_files()
# Calculate processing time
end_time = time.time()
processing_time = end_time - start_time
# Log successful processing
log_counter(
metric_name="podcasts_processed_total",
labels=labels,
value=1
)
# Log processing time
log_histogram(
metric_name="podcast_processing_time_seconds",
value=processing_time,
labels=labels
)
# Return the final outputs
final_progress = update_progress("Processing complete.")
return (final_progress, full_content, summary or "No summary generated.",
title, author, keywords, error_message)
except Exception as e:
# Calculate processing time up to the point of failure
end_time = time.time()
processing_time = end_time - start_time
# Log failed processing
log_counter(
metric_name="podcasts_failed_total",
labels=labels,
value=1
)
# Log processing time even on failure
log_histogram(
metric_name="podcast_processing_time_seconds",
value=processing_time,
labels=labels
)
logging.error(f"Error processing podcast: {str(e)}")
cleanup_files()
final_progress = update_progress(f"Processing failed: {str(e)}")
return (final_progress, "", "", "", "", "", str(e))
#
#
####################################################################################################################### |