File size: 11,948 Bytes
43cd37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Gradio_Shared.py
# Gradio UI functions that are shared across multiple tabs
#
# Imports
import logging
import sqlite3
import traceback
from functools import wraps
from typing import List, Tuple
#
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.DB.DB_Manager import list_prompts, db, search_and_display, fetch_prompt_details
from App_Function_Libraries.DB.SQLite_DB import DatabaseError
from App_Function_Libraries.Utils.Utils import format_transcription
#
##############################################################################################################
#
# Functions:

whisper_models = ["small", "medium", "small.en", "medium.en", "medium", "large", "large-v1", "large-v2", "large-v3",
                  "distil-large-v2", "distil-medium.en", "distil-small.en"]

# Sample data
prompts_category_1 = [
    "What are the key points discussed in the video?",
    "Summarize the main arguments made by the speaker.",
    "Describe the conclusions of the study presented."
]

prompts_category_2 = [
    "How does the proposed solution address the problem?",
    "What are the implications of the findings?",
    "Can you explain the theory behind the observed phenomenon?"
]

all_prompts = prompts_category_1 + prompts_category_2



#FIXME - SQL Functions that need to be addressed/added to DB manager
def search_media(query, fields, keyword, page):
    try:
        results = search_and_display(query, fields, keyword, page)
        return results
    except Exception as e:
        logger = logging.getLogger()
        logger.error(f"Error searching media: {e}")
        return str(e)

def fetch_items_by_title_or_url(search_query: str, search_type: str):
    try:
        with db.get_connection() as conn:
            cursor = conn.cursor()
            if search_type == 'Title':
                cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',))
            elif search_type == 'URL':
                cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',))
            results = cursor.fetchall()
            return results
    except sqlite3.Error as e:
        raise DatabaseError(f"Error fetching items by {search_type}: {e}")

def fetch_items_by_keyword(search_query: str):
    try:
        with db.get_connection() as conn:
            cursor = conn.cursor()
            cursor.execute("""

                SELECT m.id, m.title, m.url

                FROM Media m

                JOIN MediaKeywords mk ON m.id = mk.media_id

                JOIN Keywords k ON mk.keyword_id = k.id

                WHERE k.keyword LIKE ?

            """, (f'%{search_query}%',))
            results = cursor.fetchall()
            return results
    except sqlite3.Error as e:
        raise DatabaseError(f"Error fetching items by keyword: {e}")

# FIXME - Raw SQL not using DB_Manager...
def fetch_items_by_content(search_query: str):
    try:
        with db.get_connection() as conn:
            cursor = conn.cursor()
            cursor.execute("SELECT id, title, url FROM Media WHERE content LIKE ?", (f'%{search_query}%',))
            results = cursor.fetchall()
            return results
    except sqlite3.Error as e:
        raise DatabaseError(f"Error fetching items by content: {e}")



# FIXME - RAW SQL not using DB_Manager...
def fetch_item_details_single(media_id: int):
    try:
        with db.get_connection() as conn:
            cursor = conn.cursor()
            cursor.execute("""

                SELECT prompt, summary 

                FROM MediaModifications 

                WHERE media_id = ? 

                ORDER BY modification_date DESC 

                LIMIT 1

            """, (media_id,))
            prompt_summary_result = cursor.fetchone()
            cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
            content_result = cursor.fetchone()

            prompt = prompt_summary_result[0] if prompt_summary_result else ""
            summary = prompt_summary_result[1] if prompt_summary_result else ""
            content = content_result[0] if content_result else ""

            return prompt, summary, content
    except sqlite3.Error as e:
        raise Exception(f"Error fetching item details: {e}")


# FIXME - RAW SQL not using DB_Manager...
def fetch_item_details(media_id: int):
    try:
        with db.get_connection() as conn:
            cursor = conn.cursor()
            cursor.execute("""

                SELECT prompt, summary 

                FROM MediaModifications 

                WHERE media_id = ? 

                ORDER BY modification_date DESC 

                LIMIT 1

            """, (media_id,))
            prompt_summary_result = cursor.fetchone()
            cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
            content_result = cursor.fetchone()

            prompt = prompt_summary_result[0] if prompt_summary_result else ""
            summary = prompt_summary_result[1] if prompt_summary_result else ""
            content = content_result[0] if content_result else ""

            return content, prompt, summary
    except sqlite3.Error as e:
        logging.error(f"Error fetching item details: {e}")
        return "", "", ""  # Return empty strings if there's an error

# Handle prompt selection
def handle_prompt_selection(prompt):
    return f"You selected: {prompt}"


def update_user_prompt(preset_name):
    details = fetch_prompt_details(preset_name)
    if details:
        # Return a dictionary with all details
        return {
            "title": details[0],
            "author": details[1],
            "details": details[2],
            "system_prompt": details[3],
            "user_prompt": details[4] if len(details) > 3 else "",
        }
    return {"title": "", "details": "", "system_prompt": "", "user_prompt": "", "author": ""}

def browse_items(search_query, search_type):
    if search_type == 'Keyword':
        results = fetch_items_by_keyword(search_query)
    elif search_type == 'Content':
        results = fetch_items_by_content(search_query)
    else:
        results = fetch_items_by_title_or_url(search_query, search_type)
    return results


def update_dropdown(search_query, search_type):
    results = browse_items(search_query, search_type)
    item_options = [f"{item[1]} ({item[2]})" for item in results]
    new_item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results}
    print(f"Debug - Update Dropdown - New Item Mapping: {new_item_mapping}")
    return gr.update(choices=item_options), new_item_mapping



def get_media_id(selected_item, item_mapping):
    return item_mapping.get(selected_item)


def update_detailed_view(item, item_mapping):
    # Function to update the detailed view based on selected item
    if item:
        item_id = item_mapping.get(item)
        if item_id:
            content, prompt, summary = fetch_item_details(item_id)
            if content or prompt or summary:
                details_html = "<h4>Details:</h4>"
                if prompt:
                    formatted_prompt = format_transcription(prompt)
                    details_html += f"<h4>Prompt:</h4>{formatted_prompt}</p>"
                if summary:
                    formatted_summary = format_transcription(summary)
                    details_html += f"<h4>Summary:</h4>{formatted_summary}</p>"
                # Format the transcription content for better readability
                formatted_content = format_transcription(content)
                #content_html = f"<h4>Transcription:</h4><div style='white-space: pre-wrap;'>{content}</div>"
                content_html = f"<h4>Transcription:</h4><div style='white-space: pre-wrap;'>{formatted_content}</div>"
                return details_html, content_html
            else:
                return "No details available.", "No details available."
        else:
            return "No item selected", "No item selected"
    else:
        return "No item selected", "No item selected"


def format_content(content):
    # Format content using markdown
    formatted_content = f"```\n{content}\n```"
    return formatted_content


def update_prompt_dropdown():
    prompt_names = list_prompts()
    return gr.update(choices=prompt_names)


def display_prompt_details(selected_prompt):
    if selected_prompt:
        prompts = update_user_prompt(selected_prompt)
        if prompts["title"]:  # Check if we have any details
            details_str = f"<h4>Details:</h4><p>{prompts['details']}</p>"
            system_str = f"<h4>System:</h4><p>{prompts['system_prompt']}</p>"
            user_str = f"<h4>User:</h4><p>{prompts['user_prompt']}</p>" if prompts['user_prompt'] else ""
            return details_str + system_str + user_str
    return "No details available."

def search_media_database(query: str) -> List[Tuple[int, str, str]]:
    return browse_items(query, 'Title')


def load_media_content(media_id: int) -> dict:
    try:
        print(f"Debug - Load Media Content - Media ID: {media_id}")
        item_details = fetch_item_details(media_id)
        print(f"Debug - Load Media Content - Item Details: \n\n{item_details}\n\n\n\n")

        if isinstance(item_details, tuple) and len(item_details) == 3:
            content, prompt, summary = item_details
        else:
            print(f"Debug - Load Media Content - Unexpected item_details format: \n\n{item_details}\n\n\n\n")
            content, prompt, summary = "", "", ""

        return {
            "content": content or "No content available",
            "prompt": prompt or "No prompt available",
            "summary": summary or "No summary available"
        }
    except Exception as e:
        print(f"Debug - Load Media Content - Error: {str(e)}")
        return {"content": "", "prompt": "", "summary": ""}


def error_handler(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            error_message = f"Error in {func.__name__}: {str(e)}"
            logging.error(f"{error_message}\n{traceback.format_exc()}")
            return {"error": error_message, "details": traceback.format_exc()}
    return wrapper


def create_chunking_inputs():
    chunk_text_by_words_checkbox = gr.Checkbox(label="Chunk Text by Words", value=False, visible=True)
    max_words_input = gr.Number(label="Max Words", value=300, precision=0, visible=True)
    chunk_text_by_sentences_checkbox = gr.Checkbox(label="Chunk Text by Sentences", value=False, visible=True)
    max_sentences_input = gr.Number(label="Max Sentences", value=10, precision=0, visible=True)
    chunk_text_by_paragraphs_checkbox = gr.Checkbox(label="Chunk Text by Paragraphs", value=False, visible=True)
    max_paragraphs_input = gr.Number(label="Max Paragraphs", value=5, precision=0, visible=True)
    chunk_text_by_tokens_checkbox = gr.Checkbox(label="Chunk Text by Tokens", value=False, visible=True)
    max_tokens_input = gr.Number(label="Max Tokens", value=1000, precision=0, visible=True)
    gr_semantic_chunk_long_file = gr.Checkbox(label="Semantic Chunking by Sentence similarity", value=False, visible=True)
    gr_semantic_chunk_long_file_size = gr.Number(label="Max Chunk Size", value=2000, visible=True)
    gr_semantic_chunk_long_file_overlap = gr.Number(label="Max Chunk Overlap Size", value=100, visible=True)
    return [chunk_text_by_words_checkbox, max_words_input, chunk_text_by_sentences_checkbox, max_sentences_input,
            chunk_text_by_paragraphs_checkbox, max_paragraphs_input, chunk_text_by_tokens_checkbox, max_tokens_input]