File size: 43,665 Bytes
43cd37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
# Local_Summarization_Lib.py
#########################################
# Local Summarization Library
# This library is used to perform summarization with a 'local' inference engine.
#
####
#
####################
# Function List
# FIXME - UPDATE Function Arguments
# 1. summarize_with_local_llm(text, custom_prompt_arg)
# 2. summarize_with_llama(api_url, text, token, custom_prompt)
# 3. summarize_with_kobold(api_url, text, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, text, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
###############################
# Import necessary libraries
import json
import logging
import os
import time
from typing import Union
import requests
# Import 3rd-party Libraries
# Import Local
from App_Function_Libraries.Utils.Utils import load_and_log_configs, extract_text_from_segments
#
#######################################################################################################################
# Function Definitions
#
logger = logging.getLogger()
summarizer_prompt = """
<s>You are a bulleted notes specialist. [INST]```When creating comprehensive bulleted notes, you should follow these guidelines: Use multiple headings based on the referenced topics, not categories like quotes or terms. Headings should be surrounded by bold formatting and not be listed as bullet points themselves. Leave no space between headings and their corresponding list items underneath. Important terms within the content should be emphasized by setting them in bold font. Any text that ends with a colon should also be bolded. Before submitting your response, review the instructions, and make any corrections necessary to adhered to the specified format. Do not reference these instructions within the notes.``` \nBased on the content between backticks create comprehensive bulleted notes.[/INST]
**Bulleted Note Creation Guidelines**
**Headings**:
- Based on referenced topics, not categories like quotes or terms
- Surrounded by **bold** formatting
- Not listed as bullet points
- No space between headings and list items underneath
**Emphasis**:
- **Important terms** set in bold font
- **Text ending in a colon**: also bolded
**Review**:
- Ensure adherence to specified format
- Do not reference these instructions in your response.</s>[INST] {{ .Prompt }} [/INST]
"""
# FIXME - temp is not used
def summarize_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None):
try:
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Local LLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("openai: Using provided string data for summarization")
data = input_data
logging.debug(f"Local LLM: Loaded data: {data}")
logging.debug(f"Local LLM: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Local LLM: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
if system_message is None:
system_message = "You are a helpful AI assistant."
headers = {
'Content-Type': 'application/json'
}
logging.debug("Local LLM: Preparing data + prompt for submittal")
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"messages": [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": local_llm_prompt
}
],
"max_tokens": 28000, # Adjust tokens as needed
}
logging.debug("Local LLM: Posting request")
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Local LLM: Summarization successful")
print("Local LLM: Summarization successful.")
return summary
else:
logging.warning("Local LLM: Summary not found in the response data")
return "Local LLM: Summary not available"
else:
logging.debug("Local LLM: Summarization failed")
print("Local LLM: Failed to process summary:", response.text)
return "Local LLM: Failed to process summary"
except Exception as e:
logging.debug("Local LLM: Error in processing: %s", str(e))
print("Error occurred while processing summary with Local LLM:", str(e))
return "Local LLM: Error occurred while processing summary"
def summarize_with_llama(input_data, custom_prompt, api_key=None, temp=None, system_message=None, api_url="http://127.0.0.1:8080/completion",):
try:
logging.debug("Llama.cpp: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
llama_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
llama_api_key = api_key
logging.info("Llama.cpp: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
llama_api_key = loaded_config_data['api_keys'].get('llama')
if llama_api_key:
logging.info("Llama.cpp: Using API key from config file")
else:
logging.warning("Llama.cpp: No API key found in config file")
# Load transcript
logging.debug("llama.cpp: Loading JSON data")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Llama.cpp: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Llama.cpp: Using provided string data for summarization")
data = input_data
logging.debug(f"Llama Summarize: Loaded data: {data}")
logging.debug(f"Llama Summarize: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Llama Summarize: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Llama Summarize: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if len(api_key) > 5:
headers['Authorization'] = f'Bearer {api_key}'
if system_message is None:
system_message = "You are a helpful AI assistant."
logging.debug(f":Llama Summarize: System Prompt being sent is {system_message}")
if system_message is None:
system_message = "You are a helpful AI assistant."
if custom_prompt is None:
llama_prompt = f"{summarizer_prompt}\n\n\n\n{text}"
else:
llama_prompt = f"{custom_prompt}\n\n\n\n{text}"
data = {
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": llama_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
logging.debug("llama: Submitting request to API endpoint")
print("llama: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
# if 'X' in response_data:
logging.debug(response_data)
summary = response_data['content'].strip()
logging.debug("llama: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
return f"Llama: API request failed: {response.text}"
except Exception as e:
logging.error("Llama: Error in processing: %s", str(e))
return f"Llama: Error occurred while processing summary with llama: {str(e)}"
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def summarize_with_kobold(input_data, api_key, custom_prompt_input, system_message=None, temp=None, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate"):
logging.debug("Kobold: Summarization process starting...")
try:
logging.debug("Kobold: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
kobold_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
kobold_api_key = api_key
logging.info("Kobold: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
kobold_api_key = loaded_config_data['api_keys'].get('kobold')
if kobold_api_key:
logging.info("Kobold: Using API key from config file")
else:
logging.warning("Kobold: No API key found in config file")
logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Kobold.cpp: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Kobold.cpp: Using provided string data for summarization")
data = input_data
logging.debug(f"Kobold.cpp: Loaded data: {data}")
logging.debug(f"Kobold.cpp: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Kobold.cpp: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Kobold.cpp: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if custom_prompt_input is None:
kobold_prompt = f"{summarizer_prompt}\n\n\n\n{text}"
else:
kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}"
logging.debug("Kobold summarization: Prompt being sent is {kobold_prompt}")
# FIXME
# Values literally c/p from the api docs....
data = {
"max_context_length": 8096,
"max_length": 4096,
"prompt": kobold_prompt,
"temperature": 0.7,
#"top_p": 0.9,
#"top_k": 100
#"rep_penalty": 1.0,
}
logging.debug("Kobold Summarization: Submitting request to API endpoint")
print("Kobold Summarization: Submitting request to API endpoint")
kobold_api_ip = loaded_config_data['local_api_ip']['kobold']
try:
response = requests.post(kobold_api_ip, headers=headers, json=data)
logging.debug("Kobold Summarization: API Response Status Code: %d", response.status_code)
if response.status_code == 200:
try:
response_data = response.json()
logging.debug("kobold: API Response Data: %s", response_data)
if response_data and 'results' in response_data and len(response_data['results']) > 0:
summary = response_data['results'][0]['text'].strip()
logging.debug("kobold: Summarization successful")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
except ValueError as e:
logging.error("kobold: Error parsing JSON response: %s", str(e))
return f"Error parsing JSON response: {str(e)}"
else:
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
return f"kobold: API request failed: {response.text}"
except Exception as e:
logging.error("kobold: Error in processing: %s", str(e))
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
except Exception as e:
logging.error("kobold: Error in processing: %s", str(e))
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def summarize_with_oobabooga(input_data, api_key, custom_prompt, system_message=None, temp=None, api_url="http://127.0.0.1:5000/v1/chat/completions"):
logging.debug("Oobabooga: Summarization process starting...")
try:
logging.debug("Oobabooga: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
ooba_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
ooba_api_key = api_key
logging.info("Oobabooga: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
ooba_api_key = loaded_config_data['api_keys'].get('ooba')
if ooba_api_key:
logging.info("Anthropic: Using API key from config file")
else:
logging.warning("Anthropic: No API key found in config file")
logging.debug(f"Oobabooga: Using API Key: {ooba_api_key[:5]}...{ooba_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Oobabooga: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Oobabooga: Using provided string data for summarization")
data = input_data
logging.debug(f"Oobabooga: Loaded data: {data}")
logging.debug(f"Oobabooga: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Oobabooga: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if custom_prompt is None:
custom_prompt = f"{summarizer_prompt}\n\n\n\n{text}"
else:
custom_prompt = f"{custom_prompt}\n\n\n\n{text}"
logging.debug("Ooba Summarize: Prompt being sent is {kobold_prompt}")
ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}"
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
if system_message is None:
system_message = "You are a helpful AI assistant."
data = {
"mode": "chat",
"character": "Example",
"messages": [{"role": "user", "content": ooba_prompt}],
"system_message": system_message,
}
logging.debug("ooba: Submitting request to API endpoint")
print("ooba: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data, verify=False)
logging.debug("ooba: API Response Data: %s", response)
if response.status_code == 200:
response_data = response.json()
summary = response.json()['choices'][0]['message']['content']
logging.debug("ooba: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("ooba: Error in processing: %s", str(e))
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
def summarize_with_tabbyapi(input_data, custom_prompt_input, system_message=None, api_key=None, temp=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
logging.debug("TabbyAPI: Summarization process starting...")
try:
logging.debug("TabbyAPI: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
tabby_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
tabby_api_key = api_key
logging.info("TabbyAPI: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
tabby_api_key = loaded_config_data['api_keys'].get('tabby')
if tabby_api_key:
logging.info("TabbyAPI: Using API key from config file")
else:
logging.warning("TabbyAPI: No API key found in config file")
tabby_api_ip = loaded_config_data['local_api_ip']['tabby']
tabby_model = loaded_config_data['models']['tabby']
if temp is None:
temp = 0.7
logging.debug(f"TabbyAPI: Using API Key: {tabby_api_key[:5]}...{tabby_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("tabby: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("tabby: Using provided string data for summarization")
data = input_data
logging.debug(f"tabby: Loaded data: {data}")
logging.debug(f"tabby: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("tabby: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
if system_message is None:
system_message = "You are a helpful AI assistant."
if custom_prompt_input is None:
custom_prompt_input = f"{summarizer_prompt}\n\n\n\n{text}"
else:
custom_prompt_input = f"{custom_prompt_input}\n\n\n\n{text}"
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
data2 = {
'max_tokens': 4096,
"min_tokens": 0,
'temperature': temp,
#'top_p': 1.0,
#'top_k': 0,
#'frequency_penalty': 0,
#'presence_penalty': 0.0,
#"repetition_penalty": 1.0,
'model': tabby_model,
'user': custom_prompt_input,
'messages': input_data
}
response = requests.post(tabby_api_ip, headers=headers, json=data2)
if response.status_code == 200:
response_json = response.json()
# Validate the response structure
if all(key in response_json for key in ['id', 'choices', 'created', 'model', 'object', 'usage']):
logging.info("TabbyAPI: Received a valid 200 response")
summary = response_json['choices'][0].get('message', {}).get('content', '')
return summary
else:
logging.error("TabbyAPI: Received a 200 response, but the structure is invalid")
return "Error: Received an invalid response structure from TabbyAPI."
elif response.status_code == 422:
logging.error(f"TabbyAPI: Received a 422 error. Details: {response.json()}")
return "Error: Invalid request sent to TabbyAPI."
else:
response.raise_for_status() # This will raise an exception for other status codes
except requests.exceptions.RequestException as e:
logging.error(f"Error summarizing with TabbyAPI: {e}")
return f"Error summarizing with TabbyAPI: {str(e)}"
except json.JSONDecodeError:
logging.error("TabbyAPI: Received an invalid JSON response")
return "Error: Received an invalid JSON response from TabbyAPI."
except Exception as e:
logging.error(f"Unexpected error in summarize_with_tabbyapi: {e}")
return f"Unexpected error in summarization process: {str(e)}"
def summarize_with_vllm(
input_data: Union[str, dict, list],
custom_prompt_input: str,
api_key: str = None,
model: str = None,
system_prompt: str = None,
temp: float = 0.7,
vllm_api_url: str = "http://127.0.0.1:8000/v1/chat/completions"
) -> str:
logging.debug("vLLM: Summarization process starting...")
try:
logging.debug("vLLM: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
vllm_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
vllm_api_key = api_key
logging.info("vLLM: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
vllm_api_key = loaded_config_data['api_keys'].get('vllm')
if vllm_api_key:
logging.info("vLLM: Using API key from config file")
else:
logging.warning("vLLM: No API key found in config file")
logging.debug(f"vLLM: Using API Key: {vllm_api_key[:5]}...{vllm_api_key[-5:]}")
# Process input data
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("vLLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("vLLM: Using provided data for summarization")
data = input_data
logging.debug(f"vLLM: Type of data: {type(data)}")
# Extract text for summarization
if isinstance(data, dict) and 'summary' in data:
logging.debug("vLLM: Summary already exists in the loaded data")
return data['summary']
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
elif isinstance(data, dict):
text = json.dumps(data)
else:
raise ValueError("Invalid input data format")
logging.debug(f"vLLM: Extracted text (showing first 500 chars): {text[:500]}...")
if system_prompt is None:
system_prompt = "You are a helpful AI assistant."
if custom_prompt_input is None:
custom_prompt_input = f"{summarizer_prompt}\n\n\n\n{text}"
else:
custom_prompt_input = f"{custom_prompt_input}\n\n\n\n{text}"
model = model or loaded_config_data['models']['vllm']
if system_prompt is None:
system_prompt = "You are a helpful AI assistant."
# Prepare the API request
headers = {
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"{custom_prompt_input}\n\n{text}"}
]
}
# Make the API call
logging.debug(f"vLLM: Sending request to {vllm_api_url}")
response = requests.post(vllm_api_url, headers=headers, json=payload)
# Check for successful response
response.raise_for_status()
# Extract and return the summary
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content']
logging.debug("vLLM: Summarization successful")
logging.debug(f"vLLM: Summary (first 500 chars): {summary[:500]}...")
return summary
else:
raise ValueError("Unexpected response format from vLLM API")
except requests.RequestException as e:
logging.error(f"vLLM: API request failed: {str(e)}")
return f"Error: vLLM API request failed - {str(e)}"
except json.JSONDecodeError as e:
logging.error(f"vLLM: Failed to parse API response: {str(e)}")
return f"Error: Failed to parse vLLM API response - {str(e)}"
except Exception as e:
logging.error(f"vLLM: Unexpected error during summarization: {str(e)}")
return f"Error: Unexpected error during vLLM summarization - {str(e)}"
def summarize_with_ollama(
input_data,
custom_prompt,
api_url="http://127.0.0.1:11434/v1/chat/completions",
api_key=None,
temp=None,
system_message=None,
model=None,
max_retries=5,
retry_delay=20
):
try:
logging.debug("Ollama: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
ollama_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
ollama_api_key = api_key
logging.info("Ollama: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
ollama_api_key = loaded_config_data['api_keys'].get('ollama')
if ollama_api_key:
logging.info("Ollama: Using API key from config file")
else:
logging.warning("Ollama: No API key found in config file")
# Set model from parameter or config
if model is None:
model = loaded_config_data['models'].get('ollama')
if model is None:
logging.error("Ollama: Model not found in config file")
return "Ollama: Model not found in config file"
# Set api_url from parameter or config
if api_url is None:
api_url = loaded_config_data['local_api_ip'].get('ollama')
if api_url is None:
logging.error("Ollama: API URL not found in config file")
return "Ollama: API URL not found in config file"
# Load transcript
logging.debug("Ollama: Loading JSON data")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Ollama: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Ollama: Using provided string data for summarization")
data = input_data
logging.debug(f"Ollama: Loaded data: {data}")
logging.debug(f"Ollama: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Ollama: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Ollama: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if ollama_api_key and len(ollama_api_key) > 5:
headers['Authorization'] = f'Bearer {ollama_api_key}'
ollama_prompt = f"{custom_prompt}\n\n{text}"
if system_message is None:
system_message = "You are a helpful AI assistant."
logging.debug(f"Ollama: Prompt being sent is: {ollama_prompt}")
data_payload = {
"model": model,
"messages": [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": ollama_prompt
}
],
'temperature': temp
}
for attempt in range(1, max_retries + 1):
logging.debug("Ollama: Submitting request to API endpoint")
print("Ollama: Submitting request to API endpoint")
try:
response = requests.post(api_url, headers=headers, json=data_payload, timeout=30)
response.raise_for_status() # Raises HTTPError for bad responses
response_data = response.json()
except requests.exceptions.Timeout:
logging.error("Ollama: Request timed out.")
return "Ollama: Request timed out."
except requests.exceptions.HTTPError as http_err:
logging.error(f"Ollama: HTTP error occurred: {http_err}")
return f"Ollama: HTTP error occurred: {http_err}"
except requests.exceptions.RequestException as req_err:
logging.error(f"Ollama: Request exception: {req_err}")
return f"Ollama: Request exception: {req_err}"
except json.JSONDecodeError:
logging.error("Ollama: Failed to decode JSON response")
return "Ollama: Failed to decode JSON response."
except Exception as e:
logging.error(f"Ollama: An unexpected error occurred: {str(e)}")
return f"Ollama: An unexpected error occurred: {str(e)}"
logging.debug(f"API Response Data: {response_data}")
if response.status_code == 200:
# Inspect available keys
available_keys = list(response_data.keys())
logging.debug(f"Ollama: Available keys in response: {available_keys}")
# Attempt to retrieve 'response'
summary = None
if 'response' in response_data and response_data['response']:
summary = response_data['response'].strip()
elif 'choices' in response_data and len(response_data['choices']) > 0:
choice = response_data['choices'][0]
if 'message' in choice and 'content' in choice['message']:
summary = choice['message']['content'].strip()
if summary:
logging.debug("Ollama: Chat request successful")
print("\n\nChat request successful.")
return summary
elif response_data.get('done_reason') == 'load':
logging.warning(f"Ollama: Model is loading. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
logging.error("Ollama: API response does not contain 'response' or 'choices'.")
return "Ollama: API response does not contain 'response' or 'choices'."
else:
logging.error(f"Ollama: API request failed with status code {response.status_code}: {response.text}")
return f"Ollama: API request failed: {response.text}"
logging.error("Ollama: Maximum retry attempts reached. Model is still loading.")
return "Ollama: Maximum retry attempts reached. Model is still loading."
except Exception as e:
logging.error("\n\nOllama: Error in processing: %s", str(e))
return f"Ollama: Error occurred while processing summary with Ollama: {str(e)}"
# FIXME - update to be a summarize request
def summarize_with_custom_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
custom_openai_api_key = api_key
try:
# API key validation
if not custom_openai_api_key:
logging.info("Custom OpenAI API: API key not provided as parameter")
logging.info("Custom OpenAI API: Attempting to use API key from config file")
custom_openai_api_key = loaded_config_data['api_keys']['custom_openai_api_key']
if not custom_openai_api_key:
logging.error("Custom OpenAI API: API key not found or is empty")
return "Custom OpenAI API: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"Custom OpenAI API: Using API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:]}")
# Input data handling
logging.debug(f"Custom OpenAI API: Raw input data type: {type(input_data)}")
logging.debug(f"Custom OpenAI API: Raw input data (first 500 chars): {str(input_data)[:500]}...")
if isinstance(input_data, str):
if input_data.strip().startswith('{'):
# It's likely a JSON string
logging.debug("Custom OpenAI API: Parsing provided JSON string data for summarization")
try:
data = json.loads(input_data)
except json.JSONDecodeError as e:
logging.error(f"Custom OpenAI API: Error parsing JSON string: {str(e)}")
return f"Custom OpenAI API: Error parsing JSON input: {str(e)}"
elif os.path.isfile(input_data):
logging.debug("Custom OpenAI API: Loading JSON data from file for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Custom OpenAI API: Using provided string data for summarization")
data = input_data
else:
data = input_data
logging.debug(f"Custom OpenAI API: Processed data type: {type(data)}")
logging.debug(f"Custom OpenAI API: Processed data (first 500 chars): {str(data)[:500]}...")
# Text extraction
if isinstance(data, dict):
if 'summary' in data:
logging.debug("Custom OpenAI API: Summary already exists in the loaded data")
return data['summary']
elif 'segments' in data:
text = extract_text_from_segments(data['segments'])
else:
text = json.dumps(data) # Convert dict to string if no specific format
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
else:
raise ValueError(f"Custom OpenAI API: Invalid input data format: {type(data)}")
logging.debug(f"Custom OpenAI API: Extracted text (first 500 chars): {text[:500]}...")
logging.debug(f"v: Custom prompt: {custom_prompt_arg}")
if input_data is None:
input_data = f"{summarizer_prompt}\n\n\n\n{text}"
else:
input_data = f"{input_data}\n\n\n\n{text}"
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"Custom OpenAI API: Using model: {openai_model}")
headers = {
'Authorization': f'Bearer {custom_openai_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:] if custom_openai_api_key else None}")
logging.debug("Custom OpenAI API: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.7
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
temp = float(temp)
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
custom_openai_url = loaded_config_data['Local_api_ip']['custom_openai_api_ip']
logging.debug("Custom OpenAI API: Posting request")
response = requests.post(custom_openai_url, headers=headers, json=data)
logging.debug(f"Custom OpenAI API full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
chat_response = response_data['choices'][0]['message']['content'].strip()
logging.debug("Custom OpenAI API: Chat Sent successfully")
logging.debug(f"Custom OpenAI API: Chat response: {chat_response}")
return chat_response
else:
logging.warning("Custom OpenAI API: Chat response not found in the response data")
return "Custom OpenAI API: Chat not available"
else:
logging.error(f"Custom OpenAI API: Chat request failed with status code {response.status_code}")
logging.error(f"Custom OpenAI API: Error response: {response.text}")
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
except json.JSONDecodeError as e:
logging.error(f"Custom OpenAI API: Error decoding JSON: {str(e)}", exc_info=True)
return f"Custom OpenAI API: Error decoding JSON input: {str(e)}"
except requests.RequestException as e:
logging.error(f"Custom OpenAI API: Error making API request: {str(e)}", exc_info=True)
return f"Custom OpenAI API: Error making API request: {str(e)}"
except Exception as e:
logging.error(f"Custom OpenAI API: Unexpected error: {str(e)}", exc_info=True)
return f"Custom OpenAI API: Unexpected error occurred: {str(e)}"
def save_summary_to_file(summary, file_path):
logging.debug("Now saving summary to file...")
base_name = os.path.splitext(os.path.basename(file_path))[0]
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
logging.info(f"Summary saved to file: {summary_file_path}")
#
#
#######################################################################################################################
|