|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from App_Function_Libraries.Utils.Utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def chat_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None):
|
|
try:
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Local LLM: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("openai: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Local LLM: Loaded data: {data}")
|
|
logging.debug(f"Local LLM: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Local LLM: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant."
|
|
|
|
headers = {
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
logging.debug("Local LLM: Preparing data + prompt for submittal")
|
|
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
|
data = {
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": system_message
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": local_llm_prompt
|
|
}
|
|
],
|
|
"max_tokens": 28000,
|
|
}
|
|
logging.debug("Local LLM: Posting request")
|
|
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("Local LLM: Summarization successful")
|
|
print("Local LLM: Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.warning("Local LLM: Chat response not found in the response data")
|
|
return "Local LLM: Chat response not available"
|
|
else:
|
|
logging.debug("Local LLM: Chat request failed")
|
|
print("Local LLM: Failed to process Chat response:", response.text)
|
|
return "Local LLM: Failed to process Chat response"
|
|
except Exception as e:
|
|
logging.debug("Local LLM: Error in processing: %s", str(e))
|
|
print("Error occurred while processing Chat request with Local LLM:", str(e))
|
|
return "Local LLM: Error occurred while processing Chat response"
|
|
|
|
def chat_with_llama(input_data, custom_prompt, api_url="http://127.0.0.1:8080/completion", api_key=None, system_prompt=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("llama.cpp: API key not provided as parameter")
|
|
logging.info("llama.cpp: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['llama']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("llama.cpp: API key not found or is empty")
|
|
|
|
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
if len(api_key) > 5:
|
|
headers['Authorization'] = f'Bearer {api_key}'
|
|
|
|
if system_prompt is None:
|
|
system_prompt = "You are a helpful AI assistant that provides accurate and concise information."
|
|
|
|
logging.debug("Llama.cpp: System prompt being used is: %s", system_prompt)
|
|
logging.debug("Llama.cpp: User prompt being used is: %s", custom_prompt)
|
|
|
|
|
|
llama_prompt = f"{custom_prompt} \n\n\n\n{input_data}"
|
|
logging.debug(f"llama: Prompt being sent is {llama_prompt}")
|
|
|
|
data = {
|
|
"prompt": f"{llama_prompt}",
|
|
"system_prompt": f"{system_prompt}"
|
|
}
|
|
|
|
logging.debug("llama: Submitting request to API endpoint")
|
|
print("llama: Submitting request to API endpoint")
|
|
response = requests.post(api_url, headers=headers, json=data)
|
|
response_data = response.json()
|
|
logging.debug("API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
|
|
logging.debug(response_data)
|
|
summary = response_data['content'].strip()
|
|
logging.debug("llama: Summarization successful")
|
|
print("Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"Llama: API request failed: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("Llama: Error in processing: %s", str(e))
|
|
return f"Llama: Error occurred while processing summary with llama: {str(e)}"
|
|
|
|
|
|
|
|
|
|
def chat_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate", temp=None, system_message=None):
|
|
logging.debug("Kobold: Summarization process starting...")
|
|
try:
|
|
logging.debug("Kobold: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
kobold_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
kobold_api_key = api_key
|
|
logging.info("Kobold: Using API key provided as parameter")
|
|
else:
|
|
|
|
kobold_api_key = loaded_config_data['api_keys'].get('kobold')
|
|
if kobold_api_key:
|
|
logging.info("Kobold: Using API key from config file")
|
|
else:
|
|
logging.warning("Kobold: No API key found in config file")
|
|
|
|
logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Kobold.cpp: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Kobold.cpp: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Kobold.cpp: Loaded data: {data}")
|
|
logging.debug(f"Kobold.cpp: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Kobold.cpp: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Kobold.cpp: Invalid input data format")
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
|
|
kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}"
|
|
logging.debug("kobold: Prompt being sent is {kobold_prompt}")
|
|
|
|
|
|
|
|
data = {
|
|
"max_context_length": 8096,
|
|
"max_length": 4096,
|
|
"prompt": kobold_prompt,
|
|
"temperature": 0.7,
|
|
|
|
|
|
|
|
}
|
|
|
|
logging.debug("kobold: Submitting request to API endpoint")
|
|
print("kobold: Submitting request to API endpoint")
|
|
kobold_api_ip = loaded_config_data['local_api_ip']['kobold']
|
|
try:
|
|
response = requests.post(kobold_api_ip, headers=headers, json=data)
|
|
logging.debug("kobold: API Response Status Code: %d", response.status_code)
|
|
|
|
if response.status_code == 200:
|
|
try:
|
|
response_data = response.json()
|
|
logging.debug("kobold: API Response Data: %s", response_data)
|
|
|
|
if response_data and 'results' in response_data and len(response_data['results']) > 0:
|
|
summary = response_data['results'][0]['text'].strip()
|
|
logging.debug("kobold: Chat request successful")
|
|
return summary
|
|
else:
|
|
logging.error("Expected data not found in API response.")
|
|
return "Expected data not found in API response."
|
|
except ValueError as e:
|
|
logging.error("kobold: Error parsing JSON response: %s", str(e))
|
|
return f"Error parsing JSON response: {str(e)}"
|
|
else:
|
|
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"kobold: API request failed: {response.text}"
|
|
except Exception as e:
|
|
logging.error("kobold: Error in processing: %s", str(e))
|
|
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
|
|
except Exception as e:
|
|
logging.error("kobold: Error in processing: %s", str(e))
|
|
return f"kobold: Error occurred while processing chat response with kobold: {str(e)}"
|
|
|
|
|
|
|
|
def chat_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions", system_prompt=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
try:
|
|
|
|
if api_key is None:
|
|
logging.info("ooba: API key not provided as parameter")
|
|
logging.info("ooba: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['ooba']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("ooba: API key not found or is empty")
|
|
|
|
if system_prompt is None:
|
|
system_prompt = "You are a helpful AI assistant that provides accurate and concise information."
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
|
|
|
|
|
|
|
|
ooba_prompt = f"{input_data}" + f"\n\n\n\n{custom_prompt}"
|
|
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
|
|
|
|
data = {
|
|
"mode": "chat",
|
|
"character": "Example",
|
|
"messages": [{"role": "user", "content": ooba_prompt}]
|
|
}
|
|
|
|
logging.debug("ooba: Submitting request to API endpoint")
|
|
print("ooba: Submitting request to API endpoint")
|
|
response = requests.post(api_url, headers=headers, json=data, verify=False)
|
|
logging.debug("ooba: API Response Data: %s", response)
|
|
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
summary = response.json()['choices'][0]['message']['content']
|
|
logging.debug("ooba: Summarization successful")
|
|
print("Summarization successful.")
|
|
return summary
|
|
else:
|
|
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("ooba: Error in processing: %s", str(e))
|
|
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
|
|
|
|
|
|
|
|
def chat_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
|
|
loaded_config_data = load_and_log_configs()
|
|
model = loaded_config_data['models']['tabby']
|
|
|
|
if api_key is None:
|
|
logging.info("tabby: API key not provided as parameter")
|
|
logging.info("tabby: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['tabby']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("tabby: API key not found or is empty")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("tabby: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("tabby: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"tabby: Loaded data: {data}")
|
|
logging.debug(f"tabby: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("tabby: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
data2 = {
|
|
'text': text,
|
|
'model': 'tabby'
|
|
}
|
|
tabby_api_ip = loaded_config_data['local_api']['tabby']['ip']
|
|
try:
|
|
response = requests.post(tabby_api_ip, headers=headers, json=data2)
|
|
response.raise_for_status()
|
|
summary = response.json().get('summary', '')
|
|
return summary
|
|
except requests.exceptions.RequestException as e:
|
|
logging.error(f"Error summarizing with TabbyAPI: {e}")
|
|
return "Error summarizing with TabbyAPI."
|
|
|
|
|
|
|
|
def chat_with_aphrodite(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:8080/completion"):
|
|
loaded_config_data = load_and_log_configs()
|
|
model = loaded_config_data['models']['aphrodite']
|
|
|
|
if api_key is None:
|
|
logging.info("aphrodite: API key not provided as parameter")
|
|
logging.info("aphrodite: Attempting to use API key from config file")
|
|
api_key = loaded_config_data['api_keys']['aphrodite']
|
|
|
|
if api_key is None or api_key.strip() == "":
|
|
logging.info("aphrodite: API key not found or is empty")
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
data2 = {
|
|
'text': input_data,
|
|
}
|
|
try:
|
|
response = requests.post(api_IP, headers=headers, json=data2)
|
|
response.raise_for_status()
|
|
summary = response.json().get('summary', '')
|
|
return summary
|
|
except requests.exceptions.RequestException as e:
|
|
logging.error(f"Error summarizing with Aphrodite: {e}")
|
|
return "Error summarizing with Aphrodite."
|
|
|
|
|
|
|
|
def chat_with_ollama(input_data, custom_prompt, api_url="http://127.0.0.1:11434/api/generate", api_key=None, temp=None, system_message=None, model=None):
|
|
try:
|
|
logging.debug("ollama: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
ollama_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
ollama_api_key = api_key
|
|
logging.info("Ollama: Using API key provided as parameter")
|
|
else:
|
|
|
|
ollama_api_key = loaded_config_data['api_keys'].get('ollama')
|
|
if ollama_api_key:
|
|
logging.info("Ollama: Using API key from config file")
|
|
else:
|
|
logging.warning("Ollama: No API key found in config file")
|
|
|
|
model = loaded_config_data['models']['ollama']
|
|
|
|
|
|
logging.debug("Ollama: Loading JSON data")
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("Ollama: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Ollama: Using provided string data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"Ollama: Loaded data: {data}")
|
|
logging.debug(f"Ollama: Type of data: {type(data)}")
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
|
|
logging.debug("Ollama: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
|
|
|
|
if isinstance(data, list):
|
|
segments = data
|
|
text = extract_text_from_segments(segments)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError("Ollama: Invalid input data format")
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'content-type': 'application/json',
|
|
}
|
|
if len(ollama_api_key) > 5:
|
|
headers['Authorization'] = f'Bearer {ollama_api_key}'
|
|
|
|
ollama_prompt = f"{custom_prompt} \n\n\n\n{text}"
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant."
|
|
logging.debug(f"llama: Prompt being sent is {ollama_prompt}")
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant."
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": [
|
|
{"role": "system",
|
|
"content": system_message
|
|
},
|
|
{"role": "user",
|
|
"content": ollama_prompt
|
|
}
|
|
],
|
|
}
|
|
|
|
logging.debug("Ollama: Submitting request to API endpoint")
|
|
print("Ollama: Submitting request to API endpoint")
|
|
response = requests.post(api_url, headers=headers, json=data)
|
|
response_data = response.json()
|
|
logging.debug("API Response Data: %s", response_data)
|
|
|
|
if response.status_code == 200:
|
|
|
|
logging.debug(response_data)
|
|
summary = response_data['content'].strip()
|
|
logging.debug("Ollama: Chat request successful")
|
|
print("\n\nChat request successful.")
|
|
return summary
|
|
else:
|
|
logging.error(f"\n\nOllama: API request failed with status code {response.status_code}: {response.text}")
|
|
return f"Ollama: API request failed: {response.text}"
|
|
|
|
except Exception as e:
|
|
logging.error("\n\nOllama: Error in processing: %s", str(e))
|
|
return f"Ollama: Error occurred while processing summary with ollama: {str(e)}"
|
|
|
|
def chat_with_vllm(
|
|
input_data: Union[str, dict, list],
|
|
custom_prompt_input: str,
|
|
api_key: str = None,
|
|
vllm_api_url: str = "http://127.0.0.1:8000/v1/chat/completions",
|
|
model: str = None,
|
|
system_prompt: str = None,
|
|
temp: float = 0.7
|
|
) -> str:
|
|
logging.debug("vLLM: Summarization process starting...")
|
|
try:
|
|
logging.debug("vLLM: Loading and validating configurations")
|
|
loaded_config_data = load_and_log_configs()
|
|
if loaded_config_data is None:
|
|
logging.error("Failed to load configuration data")
|
|
vllm_api_key = None
|
|
else:
|
|
|
|
if api_key and api_key.strip():
|
|
vllm_api_key = api_key
|
|
logging.info("vLLM: Using API key provided as parameter")
|
|
else:
|
|
|
|
vllm_api_key = loaded_config_data['api_keys'].get('vllm')
|
|
if vllm_api_key:
|
|
logging.info("vLLM: Using API key from config file")
|
|
else:
|
|
logging.warning("vLLM: No API key found in config file")
|
|
|
|
logging.debug(f"vLLM: Using API Key: {vllm_api_key[:5]}...{vllm_api_key[-5:]}")
|
|
|
|
if isinstance(input_data, str) and os.path.isfile(input_data):
|
|
logging.debug("vLLM: Loading json data for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("vLLM: Using provided data for summarization")
|
|
data = input_data
|
|
|
|
logging.debug(f"vLLM: Type of data: {type(data)}")
|
|
|
|
|
|
if isinstance(data, dict) and 'summary' in data:
|
|
logging.debug("vLLM: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
elif isinstance(data, list):
|
|
text = extract_text_from_segments(data)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
elif isinstance(data, dict):
|
|
text = json.dumps(data)
|
|
else:
|
|
raise ValueError("Invalid input data format")
|
|
|
|
logging.debug(f"vLLM: Extracted text (showing first 500 chars): {text[:500]}...")
|
|
|
|
if system_prompt is None:
|
|
system_prompt = "You are a helpful AI assistant."
|
|
|
|
model = model or loaded_config_data['models']['vllm']
|
|
if system_prompt is None:
|
|
system_prompt = "You are a helpful AI assistant."
|
|
|
|
|
|
headers = {
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
payload = {
|
|
"model": model,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": f"{custom_prompt_input}\n\n{text}"}
|
|
]
|
|
}
|
|
|
|
|
|
logging.debug(f"vLLM: Sending request to {vllm_api_url}")
|
|
response = requests.post(vllm_api_url, headers=headers, json=payload)
|
|
|
|
|
|
response.raise_for_status()
|
|
|
|
|
|
response_data = response.json()
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
summary = response_data['choices'][0]['message']['content']
|
|
logging.debug("vLLM: Summarization successful")
|
|
logging.debug(f"vLLM: Summary (first 500 chars): {summary[:500]}...")
|
|
return summary
|
|
else:
|
|
raise ValueError("Unexpected response format from vLLM API")
|
|
|
|
except requests.RequestException as e:
|
|
logging.error(f"vLLM: API request failed: {str(e)}")
|
|
return f"Error: vLLM API request failed - {str(e)}"
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"vLLM: Failed to parse API response: {str(e)}")
|
|
return f"Error: Failed to parse vLLM API response - {str(e)}"
|
|
except Exception as e:
|
|
logging.error(f"vLLM: Unexpected error during summarization: {str(e)}")
|
|
return f"Error: Unexpected error during vLLM summarization - {str(e)}"
|
|
|
|
|
|
def chat_with_custom_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
|
loaded_config_data = load_and_log_configs()
|
|
custom_openai_api_key = api_key
|
|
try:
|
|
|
|
if not custom_openai_api_key:
|
|
logging.info("Custom OpenAI API: API key not provided as parameter")
|
|
logging.info("Custom OpenAI API: Attempting to use API key from config file")
|
|
custom_openai_api_key = loaded_config_data['api_keys']['custom_openai_api_key']
|
|
|
|
if not custom_openai_api_key:
|
|
logging.error("Custom OpenAI API: API key not found or is empty")
|
|
return "Custom OpenAI API: API Key Not Provided/Found in Config file or is empty"
|
|
|
|
logging.debug(f"Custom OpenAI API: Using API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:]}")
|
|
|
|
|
|
logging.debug(f"Custom OpenAI API: Raw input data type: {type(input_data)}")
|
|
logging.debug(f"Custom OpenAI API: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
|
|
|
if isinstance(input_data, str):
|
|
if input_data.strip().startswith('{'):
|
|
|
|
logging.debug("Custom OpenAI API: Parsing provided JSON string data for summarization")
|
|
try:
|
|
data = json.loads(input_data)
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"Custom OpenAI API: Error parsing JSON string: {str(e)}")
|
|
return f"Custom OpenAI API: Error parsing JSON input: {str(e)}"
|
|
elif os.path.isfile(input_data):
|
|
logging.debug("Custom OpenAI API: Loading JSON data from file for summarization")
|
|
with open(input_data, 'r') as file:
|
|
data = json.load(file)
|
|
else:
|
|
logging.debug("Custom OpenAI API: Using provided string data for summarization")
|
|
data = input_data
|
|
else:
|
|
data = input_data
|
|
|
|
logging.debug(f"Custom OpenAI API: Processed data type: {type(data)}")
|
|
logging.debug(f"Custom OpenAI API: Processed data (first 500 chars): {str(data)[:500]}...")
|
|
|
|
|
|
if isinstance(data, dict):
|
|
if 'summary' in data:
|
|
logging.debug("Custom OpenAI API: Summary already exists in the loaded data")
|
|
return data['summary']
|
|
elif 'segments' in data:
|
|
text = extract_text_from_segments(data['segments'])
|
|
else:
|
|
text = json.dumps(data)
|
|
elif isinstance(data, list):
|
|
text = extract_text_from_segments(data)
|
|
elif isinstance(data, str):
|
|
text = data
|
|
else:
|
|
raise ValueError(f"Custom OpenAI API: Invalid input data format: {type(data)}")
|
|
|
|
logging.debug(f"Custom OpenAI API: Extracted text (first 500 chars): {text[:500]}...")
|
|
logging.debug(f"v: Custom prompt: {custom_prompt_arg}")
|
|
|
|
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
|
|
logging.debug(f"Custom OpenAI API: Using model: {openai_model}")
|
|
|
|
headers = {
|
|
'Authorization': f'Bearer {custom_openai_api_key}',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
logging.debug(
|
|
f"OpenAI API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:] if custom_openai_api_key else None}")
|
|
logging.debug("Custom OpenAI API: Preparing data + prompt for submittal")
|
|
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
|
if temp is None:
|
|
temp = 0.7
|
|
if system_message is None:
|
|
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
|
temp = float(temp)
|
|
data = {
|
|
"model": openai_model,
|
|
"messages": [
|
|
{"role": "system", "content": system_message},
|
|
{"role": "user", "content": openai_prompt}
|
|
],
|
|
"max_tokens": 4096,
|
|
"temperature": temp
|
|
}
|
|
|
|
custom_openai_url = loaded_config_data['Local_api_ip']['custom_openai_api_ip']
|
|
|
|
logging.debug("Custom OpenAI API: Posting request")
|
|
response = requests.post(custom_openai_url, headers=headers, json=data)
|
|
logging.debug(f"Custom OpenAI API full API response data: {response}")
|
|
if response.status_code == 200:
|
|
response_data = response.json()
|
|
logging.debug(response_data)
|
|
if 'choices' in response_data and len(response_data['choices']) > 0:
|
|
chat_response = response_data['choices'][0]['message']['content'].strip()
|
|
logging.debug("Custom OpenAI API: Chat Sent successfully")
|
|
logging.debug(f"Custom OpenAI API: Chat response: {chat_response}")
|
|
return chat_response
|
|
else:
|
|
logging.warning("Custom OpenAI API: Chat response not found in the response data")
|
|
return "Custom OpenAI API: Chat not available"
|
|
else:
|
|
logging.error(f"Custom OpenAI API: Chat request failed with status code {response.status_code}")
|
|
logging.error(f"Custom OpenAI API: Error response: {response.text}")
|
|
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"Custom OpenAI API: Error decoding JSON: {str(e)}", exc_info=True)
|
|
return f"Custom OpenAI API: Error decoding JSON input: {str(e)}"
|
|
except requests.RequestException as e:
|
|
logging.error(f"Custom OpenAI API: Error making API request: {str(e)}", exc_info=True)
|
|
return f"Custom OpenAI API: Error making API request: {str(e)}"
|
|
except Exception as e:
|
|
logging.error(f"Custom OpenAI API: Unexpected error: {str(e)}", exc_info=True)
|
|
return f"Custom OpenAI API: Unexpected error occurred: {str(e)}"
|
|
|
|
|
|
def save_summary_to_file(summary, file_path):
|
|
logging.debug("Now saving summary to file...")
|
|
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
|
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
|
|
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
|
|
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
|
|
with open(summary_file_path, 'w') as file:
|
|
file.write(summary)
|
|
logging.info(f"Summary saved to file: {summary_file_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|